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An Extension of Wolovich’s Definition
of Equivalence of Linear Systems

N. P. Karampetakis, A. C. Pugh, A. 1. Vardulakis,
and G. E. Hayton

Abstract— Wolovich’s classical definition of equivalence for linear
systems is extended to the generalized study of linear systems. It is shown
that the resulting equivalence is an alternative characterization of the
notion of full system equivalence underlying its fundamental role in the
generalized study of linear systems.

1. INTRODUCTION

The conventicnal theory of linear systems deals with the finite
frequency (exponential and sinusoidal) behavior of such systems. In
this theory the transformation of strict system equivalence originally
proposed by Rosenbrock [9] plays a central role. This transformation
does indeed possess the property of preserving the finite frequency
structure of any polynomial matrix description to which it is applied.
Another notion of “equivalence,” proposed by Wolovich [13], was
based on the intuitive idea that two general linear systems should
be deemed equivalent in case any state-space reductions of them
are related by the usual change of basis in the state space or in
system matrix terms, system similarity [9]. Pernebo [5] has shown that
strict system equivalence in Rosenbrock’s sense is equivalent to the
existence of a certain bijective mapping between the sets of solutions
to the differential equations describing the systems. A consequence
of this proposition was that Wolovich’s definition and strict system
equivalence are seen as identical notions of equivalence.

The generalized theory of linear systems seeks a more complete
study of linear system behavior by considering additionally the
possible impulsive motion. This necessitates treating the system’s
infinite frequency behavior on an equal basis to its finite frequency
behavior, and in this respect the above transformations do not suffice
since they do not preserve the infinite frequency properties of the
system. Within this spirit of an integrated study [1], [7] proposed
the transformation of complete system equivalence for generalized
state-space (g.s.s.) systems, while [3] proposed the transformation of
full system equivalence for general linear systems. Recently, [8] has
given a characterization of full system equivalence in the manner
of [5], where the existence of a certain bijective mapping between
the sets of finite and infinite solutions of the differential equations
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describing the system is critical. These transformations do indeed
have the property of simultaneously preserving the finite and infinite
frequency structure of systems to which they are applied.

This paper follows Wolovich [13], and a notion of “equivalence”
between two general system descriptions is attributed on the basis of
equivalence of their underlying g.s.s. models. This represents a natural
extension of the Wolovich idea since g.s.s. systermns are the most
simple form of system equations which can simultaneously exhibit
finite and infinite frequency behavior. The connection between this
notion of equivalence and full system equivalence is considered.

II. PRELIMINARY RESULTS
Consider a linear time invariant multivariable system ¥ described
by
A(p)B(t) = B(p)uit)

y(t) = C(p)B(t) + D(p)ult)
where p = d/dt, A(p) € R[] with |A(p)] # 0,B(p) €
R[p]™*™, C(p) € R[p]"™", D(p) € R[p]"*™, B(t) : (0—.0) —
R" the pseudostate of T , u(t) : (0-, o) — R™ the control input,
and y(t) the output of I, and let its Rosenbrock system matrix be

(1a)
(1b)

ro=[ 4, B9 emrmm
T is in generalized state-space g.s.s. form if it takes the form

Ei(t) = Az(t) + Bu(t) (3a)

y(t) = Cz(t) + Du(t) (3b)

where E € R79, A € R?¥*? , B ¢ R¥"™, C € RP*? and
D € RP*™. Consider the set P(p, m) of (r+p) x(r+m) polynomial
matrices where the integer » > max{-p,—m}.

Definition 1 {2]: Two martrices T3 (s), T2(s) € P(p,m) are said
to be fully equivalent (f.e.) in case there exist polynomial matrices
M(s),N(s) of appropriate dimensions such that

[M(s) Ta(s)] [_Ti\(:j)} =1 @)

where the compound matrices in (4) satisfy the following:

1) They have full normal rank. (5a)
2) They have no finite nor infinite zeros. (5b)
3) The following McMillan degree conditions hold:
S ([M(s) Ta(s)]) = ém{Tais))
Ti(s .
Sas ([_ ‘}\E;‘j)]) = bou(Ti(s)). (5¢)
O

Let Fo(p,m) be the set of (r + p) x (r + m) Rosenbrock system
matrices (2), then the result is shown below.

Definition 2 {3]: Pi(s), Pa(s) € Py(p.m) are said 1o be full
system equivalent (fs.e.) if 3 polynomial matrices M (s), N(s),
X(s), ¥(s) s.t. (6), shown at the bottom of the next page, where
(6) is an f.e. transformation. O

If M(s),N(s),X(s),Y(s) in (6) are constant and P, (s). P:(s)
are in g.s.s. form, then P;(s), Pa(s) are termed completely system
equivalent (c.s.e.). If the complete (finite and infinite) solution space
of (1) for a fixed control u(t) is denoted by X.. then a mapping
interpretation of f.s.e. and c.s.e. follows.
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Definition 3 [1], {8]: Let T, Xy be two general dynamical sys-
tems of the form (1) (respectively, g.s.s. systems) with respective
solution spaces A, , X2 for a given fixed control (). £, and T, are
said to be fundamentally equivalent if and only if the two following
conditions hold:

1) If B:(t) is the pseudostate of X; (i=1,2), 3 a bijective map

between X!, X2 of the form

BOY _ (L) We) (50
u(t) 0 I u(t)
B2\ _ (L WY [5i(t)
w(t) ;) \0 I u(t) .
2) X and E; have the same output. ]
Why (7) should be constant in the case of g.s.s. systems will be
addressed in the sequel. The formal connection between f.s.e. and
fundamental equivalence is stated in Theorem 1.
Theorem I: Let L, £z be two general dynamical systems
(respectively, g.s.s. systems). £;, £, are fundamentally equivalent

iff their corresponding Rosenbrock system matrices are fs.e. (c.s.c.).
Further, with f.s.e. of the form (6), then

M

B0\ _ (M) Y()\(6:() ®
u(t) 0 I u(t)
is a bijective mapping between X, and X2,
Proof: See Pugh er al. [8]. O

The importance of f.s.e., and hence fundamental equivalence,
is that it leaves invariant the finite (exponential, sinusoidal) and
impulsive behavior of the systems [3], [4].

III. AN EXTENSION OF THE WOLGVICH DEFINITION OF EQUIVALENCE

The extension of the well-known Wolovich definition of equiva-
lence [13] proposed here relates to the complete solution space of
the generalized dynamical system (1), not simply its finite solution
space. The notion of a normalized form of the system equations, or
what is the same thing—the associated normalized system matrix,
permits consistent definitions of finite and infinite frequency system
properties to be given [11]. Thus it facilitates the integrated smdy
of the finite frequency and impulsive behaviors of the system. The
initial definitions given here therefore relate to normalized forms of
the representation. Consider the normalized form =™ of the system
z of (1), ie.,

229
1
‘Z u
Y,
Au
Fig. 1. Y, is the set of outputs corresponding to u.
JUESCONETOMRTOR S (an

It was shown in [3] that two Rosenbrock system matrices are f.s.e.
if and only if their corresponding normalized forms are so related.
It can also be shown that any Rosenbrock system matrix is f.se.
with its normalized form. It should be noted that f.s.e. defines an
equivalence relation on Fo(p,m) [12]. Following Wolovich [13], the
equivalence of two general dynarnical systems in (1) will be defined
in two parts. The first step establishes the notion of the equivalence
of T to a generalized state-space form, while the second step defines
the equivalence of two such g.s.s. forms. With regard to the first step
we propose the following definition.

Definition 4: Systems (1) and (3) are “equivalent” iff the following
hold:

1) There is a constant bijective mapping

)] _ [Co Do [z(t)
u®)| = I |u
between the set of solutions X, and X, of (9) and (3) for each
u(t)
2) The systems (9) and (3) have the same output for the given
u(t). a

(12)

Tlp)Ee(t) = Uuit) (92) Note that the equivalence is defined in terms of £, the normalized
y(t) = VE(t) (9b)  form of T, and not directly in terms of T itself. Inserting (12) in (9b)
we obtain that
where y(t) =V(Cox(t) + Dou(t)) = VCox(t) + VDgult)
A(p) Blp) © = Cz(t) + Du(?). (13)
T(p)= |~Clp) Dlp) —Im | € Rfp|rtr+m)x(rsptm)
0 Ip 0 Condition 2) of Definition 4 means that C = V(Cp and D = VD,
0 which indicates, on taking into account Condition 1), that Fig. 1
U=|0]| eRrirtetmixe (10) commutes.
I, Notice that in the Definition 4, as in the original Wolovich defini-
3 (vt pdrm) tion, (12) is taken to be constant seemingly without any justification.
V=[0 0 I.]eR An explanation of why this can be done results from the following
and lemma.
[M(s} 0][&@) Bl(s)] _ [Az(s) Bz(s)] [N(s) Y(s)} ©
X(s) I[[-Ci(s) Di(s)| |-Ca(s) Da(s) ] I
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Lemma 1: [8] Consider (1) and the following relation:

(5) = (5" 7))

0 I
where & (t) : (0—,00) — R7*("+**™) Then a necessary and
sufficient condition for (14) to be a map in the formal sense (of
being a many-one relation) is

(14)

A(p)  Bip)
T Nip) Yio) TA\-Clp) Dip} )
0 I

d
Based on Lemma 1 we can now prove the following theorem.
Theorem 2: Consider (9) and (3). Let
E0)Y _ (NG} Y(p))(=(t)
(u(t)) - ( 0 I u(t) (16)

be a relation between the solution/input space (£(t)7,u(t)T)" of (9)
and (z(t) T, u(t)T)7 of (3), where N(p) = Ngp?+---+ N1p+ No
and Y(p) = Yyp? + -+ - + Y1p + Yo (where at least one of N,,Y; is
nonzero). Then (16) is a map iff it is independent of p.
Proof: By Lemma 1, a necessary and sufficient condition for
(16) to be a map is shawn in (17), at the bottom of the page, for
Yo

some constant matrix H. Thus
z(t)
I J\ult)

(€)=
_{No+ HE&(t) + You(t)
*( u(t) )
_ ( Vo + H(Az(t) + Bu(t)) + You(t)

)

u(t)
_[No+HA Yo+ HB\ [z(t) as)
- 0 I u(t)
and so the theorem is proven. O

Note that Theorem 2 confirms our intuition that the physical system
variables £(t) are constant linear combinations of the generalized
state variables z{f). The theorem also justifies why the definition of
fundamental equivalence for g.s.s. systems [1] should be based on
constant maps as follows.

Corollary I: Fundamental equivalence of Definition 3 reduces to
the definition of fundamental equivalence for g.s.s. systems given in
[1] when the systems are taken to be in gs.s. form.
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Proof: If there exists a bijective map of (16) between two g.s.s.
systems, then according to Theorem 2 this map is a constant map as
required. O

The solution sets of X; and X, of the homogeneous systems (9a)
and (3a) form vector spaces with dimensions equal to the generalized
order fi = 6m(T(s)) and f = Sm(pE — A) [10)], respectively.
Equation (12) is then a vector space isomorphism between A
and X, and so in particular it preserves this generalized order,
ie, 6u(T(s)) = dm(pE — A). Also, (12) has the property of
preserving, obviously, the controllability subspaces of (9) and (3)
since it is a bijection between the solution/input pairs of these systems
which encode the controllability properties. Less obviously, (12) also
preserves the observability subspaces of (9) and (3) (see [8]). It is
thus reasonable to call (9) and (3) “equivalent.” Additional properties
(which relate to Wolovich [13]) arise from the above definition. The
first such result establishes invariants of an external nature.

Theorem 3: The “equivalent” (1) and (3) are:

1) partal statefinput transfer matrix equivalent:

2) input/output transfer matrix equivalent.

Proof:

1) Laplace transforming (9a) and (3a) and ignoring the initial

conditions gives

T(s)e(s) =Uauls)
(sE — A)x(s) = Bals).
Thus from Condition 1) of Definition 4 it follows that
£(s) = CoF(s) + Doiil(s) = Co(sE — A) ™' Ba(s) + Doiils)
but £(s) = 7' (s)if@(s), and so necessarily
Co(sE— A "B+ Do =T '(s)l4. (19)
2) From (9)
' g(s) = VT (s)lUa(s)
while from (3)
i(s) = (C(sE — A)"' B+ D)a(s).

By Condition 2) of Definition 4, these outputs are the same for
any given input @(#), and so necessarily

C(sE— A)'B+ D =VT ' (s)U(= C(s)A™’

(5)B(s)+ D(s)). 20

i

From an internal point of view we have the following results from
Definition 4.

pE—A B

-C 0 _ pE—4 B\

M NG Y ‘6'”( -c U)Q
] I
E 0 0 0 0
0 0 0 0 0

N, 0 0 Y, 0 E 0
rankn N1 N, 0 Y, 0 :rankR(U O)ﬁ
;7\:71 _N‘Q J\‘Yq. Y }:1,
N = Yi=0 i=2..¢ M=HE ; ©1=0 an
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Theorem 4:

1) Definition 4 reduces to the definition of ¢.s.e. when (1), which
underlies (9), is in g.s.s. form.
2) The g.s.s. system formed from (3a) and (12), i.e.,

Ex(t) = Az(t) + Bu(t) (21a)
£(t) = Coz(t) + Dou(t) (21b}

is strongly abservable, i.e., ((pE — 4)7 C7)7 has no finite

nor infinite zeros.
Proof:
1) Consider the case where (1) is in generalized state-space form,
ie, A(p) = Eip— A1, Blp) = By, C(p) = C and
D(p) = D; and so (9) is also in the g.s.s. form

Ex(t) = Ax(t) + Bu(t) (22a)

y(t) = Cx(t) (22b)
where

~ [Ex 0 0] A =B 0
E=|0 0 0| A=|Cy =Dy -1

0 00 0 I 0
_ 0 —
B=1|0o|, C=0 0 I

I

and

x(t) = [=(t)", @), y()T]T. (23)

If (22) and (3) are “equivalent” under Definition 4, then they
are fundamentally equivalent under a constant map, and so by
Theorem 1, (22) and (3) are c.s.e. Additionally note that (1)
is c.s.e. to its normalized form [3], and so from the transivity
property of c.s.e., (1) and (3} will be c.s.e.
2) If we recall that (12) is a bijective mapping, then (21) is
strongly observable [11]. O
To complete the definition of equivalence in the Wolovich manner,
it is necessary for every general dynamical system in normalized form
to possess an equivalent {in the sense of Definition 4) g.s.s. repre-
sentation. In fact it is always possible to construct this “equivalent”
g.s.5. system as follows.
Theorem 5: Every general dynamical system of (1) has an equiv-
alent (in the sense of Definition 4) g.s.s. system representation.
Proof: Verghese [11] proposed a reduction method which forms
a strongly irreducible realization { Cocs Joo . Boo } Of the denominator
matrix of the normalized form (9) s.t.

T(s) = Coolly — $J) ' Beo. (24)
Consider the g.s.s. system
I, —plee —Ba| O .
" C" ol [=® 0
- gty | =10 (25
0 N ‘ 0 —u(t) | y(t)

We shall show that (25) is an “equivalent” model for (1). Note that

- )] .~ =)

=10 1 [a(r)} =G _£(t)]
is a mapping between (9a) and (25). However, the compound matrix
((sE — A)T Cy )7 satisfies the McMillan degree condition in
(15) and has no finite nor infinite zeros because the realization
{Cc.Jo. Ba} is strongly irreducible. Thus (26) is an injective
mapping. From the form of Cy. (26} is clearly surjective and hence
is a bijection. Thus (25) satisfies the first condition of Definition 4

(26)

of equivalence. We have also that

y() = ve) E'vey [(fﬂ = [Z(ﬂ @n

& £(t)
which 1s the output from the g.s.s. representation in (25). Thus the
second condition of equivalence in Definition 4 is also fulfilled, and
so the theorem is proven. O

The definition of equivalence given in Definition 4 is a special case
of fundamental equivalence of Definition 3, and thus will possess, by
Theorem 1, a formulation as an f.e. transformation. However, more
than this can be said.

Theorem 6: (1) and (3) are equivalent in the sense of Definition
4 if and only if they are f.s.e.

Proof: (< ) Suppose (1) and (3) are f.s.e. It has already been
noted that any system T is f.s.e. to its normalized form &%, and so
from the transitivity of f.s.e., (9) and (3) are f.s.e. Hence 3 polynomial
matrices M (p), N{(p), X (p),Y(p) such that

pE—A B

[M 0| T u} -« b -0 (28)
X I 1 -V ]| Ty v
0 ~I

where (28) is an f.s.e. transformation. According to the McMillan
degree conditions on the compound polynomial matrices in (28), we
obtain that Y (p) = Y} is a constant matrix and N (p) = No + HEp,
and so (28) may be rewritten as

pE— A B
M0 T U ¢ Pl . o
X I 1 -V 0| & o=~ v | 0. @
-Ne—-HE, -Yy
0 -1
Under constant elementary operations this becomes
pE — A B
[M—TH 0| T u} -C b o
XH+VE I} =V 0]\ Ne"HA —Yo+HB
0 -1
(30)
which, according to Theorem 1, gives that
)] _ [No+HA Yo —HB]||z(t) a1
ult) | 0 I u(t)

is a bijective mapping. Full system equivalent also has the property of
leaving invariant the transfer function matrix, and so (1) and (3} will
have the same output which is the second condition of Definition 4.
{ =)If (9) and (3) are equivalent in the sense of Definition 4, then
it is obvious that they will be fundamental equivalent according to
Definition 3. Hence according to Theorem 1, they are f.s.e. Again
since any system is f.s.e. to its normalized form it follows from the
transitivity property of f.s.e. that (1) and (3) will be so related. O
Corollary 2: The general dynamical system (1) and g.s.s. system
(25) are f.s.e. O
Theorem 7: Two g.s.s. systems are f.s.e. iff they are c.s.e.
Proof: (=) In the case where (9) is in g.s.s. form, we obtain
from Theorem 6 that if the two g.s.s. systems are f.s.e., then there
exists a constant bijective mapping between their solution sets of the

form

z2t)] [N Y [=:(t)]

w(t) | |0 T ||u(t) _|
and so the two g.s.s. systems are fundamentally equivalent or by
Theorem 1, c.s.e.

(<) Tt is obvious that c.s.e. is a special case of f.s.e. O

(32)
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It is now possible to complete the definition of equivalence
between two general systems of (1). Whereas in the original Wolovich
definition system similarity [9] plays a key role, in this study it will
be the transformation of c.s.e.

Definition 5: Two general dynamical systems £, and Z» of the
form (1) are equivalent if and only if their equivalent g.s.s. systems
are c.s.e. O

Theorem 6 may now be extended to include systems in (1) as
follows.

Theorem 8: Two general dynamical systems ¥, and X, are equiv-
alent in the sense of Definition 5 if and only if they are fs.e.

Proof: (=) Consider two equivalent general dynamical systems
T, and B;. Then by Definition 5, their equivalent (in the sense of
Definition 4) g.s.s. representations Sy, Sz of the form of (25) are
c.s.e. From Theorem 6 it follows that £; and S1 (respectively, Zo
and S») are f.s.e. Further, since c.s.e. is a special case of f.s.e., we
have the’ following relation:

fs.e. fse. fs.e.
B ~'8 ~5; ~ g

(33)

Under the transitivity property of f.s.e., &1 and ¥, are therefore f.s.e.

(+) Consider two f.s.e. general dynamical systems X, and X», and
let S1, 52, respectively, be their equivalent (in the sense of Definition
4) g.s.s. systems. By Theorem 6, £; and 5; (respectively, £ and
55) are f.s.e. and so

S]f"?‘;e-zlf-i:‘elzzf‘f‘:‘e's;). (34)

Thus by the transitivity property of f.s.e., S; and S: are fs.e. or
further (by Theorem 7) $; and S2 are cs.e. Thus I;, Z» are
equivalent in the sense of Definition 5. O

IV. CONCLUSIONS

An extension of the Wolovich definition of equivalence, to encom-
pass the generalized theory of linear systems, has been given. The
extension is based on the notion that a general dynamical system
has an equivalent g.s.s. reduction. In fact, several reductions are
available, but the one selected here is that proposed by Verghese
[11]. The basis of the definition is then that two general dynamical
systems are equivalent in the case where their g.s.s. reductions are
completely system equivalent. Of course in the generalized study
of linear systems, the g.s.s. system is seen to play the same role
as the state-space model in the conventional study, while complete
system equivalence is seen to replace system similarity in this context.
Overall the definition is seen to coincide with the previously defined
transformation of f.s.e. and so has the property of simultaneously
preserving the system’s finite and infinite frequency behavior. As
such, this extension of the Wolovich notion of equivalence provides
some neat explanations of certain features of the transformation of
f.s.e. and underlines its important role in the generalized study of
linear systems.
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A Family of Nonlinear H>-Output Feedback Controllers

Chee-Fai Yung, Yung-Pin Lin, and Fang-Bo Yeh

Abstract—State-space formulas are derived for a family of controllers
solving the nonlinear H > -output feedback control problem. The formu-
las given are expressed in terms of the solutions to two Hamilton-Jacobi
inequalities in n independent variables. These controllers are obtained
by interconnecting the “central controller” with an asymptotically stable,
free system having L2-gain < . All proofs given are simple and clear
and provide deeper insight in the synthesis of the corresponding linear
H= controllers.

1. INTRODUCTION

Over the past decade, there has been an increasing interest in
linear H* -control theory since Zames’ original work [22] appeared
(see, e.g., [71-[9] and the references quoted therein). An important
breakthrough in this line of research was the derivation of state-
space solutions to the standard linear H°°-output feedback control
problem in terms of the solutions to two Riccati equations [8]. A
parameterization of all H *-(sub)optimal output feedback controllers
was also given in [8].

Recently, there has been much attention given to the extensions
of the results of linear H ™ -control theory to nonlinear settings
[21-15], [13]-[15], [17]. [18], [20]. The notion of dissipativity which
is being stressed most recently was first proposed by Willems [19] and
later generalized and fully applied to stability analysis of nonlinear
systems by Hill and Moylan [10]-[12]. The conditions under which
a nonlinear system can be rendered passive rather than dissipative
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