
A new notion of equivalence for discrete time AR representations

N. P. KARAMPETAKISy*, S. VOLOGIANNIDISy and A. I. G. VARDULAKISy

We present a new equivalence transformation termed divisor equivalence, that has the property of preserving both the
finite and the infinite elementary divisor structures of a square non-singular polynomial matrix. This equivalence relation
extends the known notion of strict equivalence, which dealt only with matrix pencils, to the general polynomial matrix
case. It is proved that divisor equivalence characterizes in a closed form relation the equivalence classes of polynomial
matrices that give rise to fundamentally equivalent discrete time auto-regressive representations.

1. Introduction

The problem of equivalence of polynomial matrices

has been studied extensively. The primary target of these

studies was the preservation of the finite elementary

divisors structure of the polynomial matrices involved
in the equivalence transformations examined. An

equivalence relation for matrix pencils, termed strict

equivalence, was initially introduced in Gantmacher

(1959) where it was shown to have the property of
preserving the finite elementary divisor structure of

(strictly) equivalent pencils. Strict equivalence of matrix

pencils has been extended to the general polynomial

matrix case, in Rosenbrock (1970) by unimodular equiva-
lence. However, both strict equivalence and unimodular

equivalence can only be applied to matrices of the same

dimension. In Pugh and Shelton (1978), extended uni-
modular equivalence was introduced as a closed form

relation between polynomial matrices of possibly differ-

ent dimensions, preserving the finite elementary divisor

structure of the polynomial matrices involved.
Infinite elementary divisors (IEDs) of matrix pencils

were initially defined in Gantmacher (1959) where it was

shown that IEDs remain invariant under the transfor-

mation of strict equivalence. Furthermore, existing work
on strict equivalence of matrix pencils makes no distinc-

tion between the preservation of their infinite zeros and

infinite elementary divisors structures, since in the case

of matrix pencils, the orders of the IEDs are related to
the orders of zeros at infinity by the ‘plus one property’

(Vardulakis and Karcanias 1983). Complete equivalence

is proposed in Pugh et al. (1987) for matrix pencils of
possibly different dimensions, which preserves both

finite and infinite zero (elementary divisor) structures

of matrix pencils. Hayton et al. (1988) extended the

definition of the IEDs to the polynomial matrix case
and showed that the IED structure gives a complete
description of the total pole-zero structure at infinity
of a polynomial matrix and not simply that associated
with the zeros at infinity. Thus, although full equivalence
presented later in Hayton et al. (1990) preserves the
infinite zero structure of polynomial matrices, it does
not preserve the IED structure, apart from the special
class of polynomial matrices having the same order.
Strict equivalence transformation of matrix pencils
was generalized for the case of regular, i.e. square and
non-singular, polynomial matrices in Vardulakis and
Antoniou (2003) where it was shown to preserve both
the FED and IED structures of the polynomial matrices
involved. This notion of equivalence characterizes strict
equivalent regular polynomial matrices through their
first-order representations using strict equivalence of
matrix pencils (Gantmacher 1959), providing no closed
form equivalence relation, something that is its main
drawback. Many authors applied the algebraic results
of the above studies in order to define equivalence rela-
tions between state space and descriptor systems in both
the continuous and discrete time cases. In this paper we
present a closed form equivalence relation between poly-
nomial matrices of possibly different degrees and dimen-
sions, which leaves invariants both the finite and infinite
elementary divisor structures, thus extending in these
terms the notion of strict equivalence of matrix pencils.
This work was motivated by the study of discrete time
autoregressive representations (DTARR), where the
finite and infinite elementary divisor structure of the
polynomial matrix describing a DTARR was proved
to be of crucial importance (Lewis 1984, Antoniou
et al. 1998, Karampetakis 2004).

Consider a linear, homogeneous, matrix difference
equation

Að�Þ�ðkÞ ¼ 0, k 2 ½0,N� ð1Þ

Að�Þ ¼ Aq�
q
þ Aq�1�

q�1
þ � � � þ A0 2 R½��r�r

ð2Þ

where Ai 2 R
r�r, i ¼ 0, 1, . . . , q, � denotes the forward

shift operator: ��ðkÞ ¼ �ðkþ 1Þ and �ðkÞ: 0,N½ ��!R
r is
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a vector valued sequence. Following the terminology of
Willems (1986, 1989, 1991), we call the set of equations
(1) an AR-representation of BAð�Þ (behaviour) where
BAð�Þ is defined as

BAð�Þ :¼ �ðkÞ: 0,N½ � ! R
r: 1ð Þ is satisfied 8k 2 0,N½ �g:

�
In the particular case when the polynomial matrix Að�Þ
is a matrix pencil A �ð Þ ¼ �E � A, the discrete time AR
representations exhibit non-causal behaviour and the
natural framework for their study appears to be over a
finite time interval 0,N½ � where the system can be essen-
tially decomposed into a purely causal and a purely
anticausal part (see Luenberger 1977, 1989, Lewis
1984, 1986, Nikoukhah et al. 1987, Lewis and
Mertzios 1990). The causal and anticausal behaviours
of such systems have been proved to be associated
respectively with the finite and infinite elementary divi-
sor structure of the polynomial matrix Að�Þ describing
the system (see Lewis (1984) for descriptor systems or
Antoniou et al. (1998) for higher-order systems). In the
more general case when the matrix pencil is singular,
then its causal and anticausal behaviour is due to the
FED, IED and the right minimal indices of the pencil
(Antoniou et al. 1997). The causal behaviour of (1) for
the case when Að�Þ is a regular polynomial matrix has
been extensively studied in Gohberg et al. (1982). These
results have been extended in Antoniou et al. (1998),
where both causal and anticausal behaviour has been
studied. The more general case, where Að�Þ is a non-
regular polynomial matrix, has been studied in
Karampetakis (2004), where it is shown that addition-
ally the right null space of the polynomial matrix Að�Þ
plays a crucial role in the causal and anticausal
behaviour of (1).

Vardulakis and Antoniou (2003) defined two AR
representations as fundamentally equivalent (FE) if
their solution spaces or behaviours (both causal and
anticausal) are isomorphic in a particular way.
Motivated by the fact that the behaviour of the AR
representation (1), when considered over a finite time
interval 0,N½ �, depends on the algebraic structure of
both the finite and the infinite elementary divisors of the
polynomial matrix Að�Þ associated with (1), they showed
that this structure is identical to the corresponding
structure of a block companion matrix pencil
�E � A 2 R½��rq�rq which constitutes a linearization of
the polynomial matrix (Antoniou et al. 1998) and
consequently the AR associated with �E � A constitutes
the natural first-order fundamentally equivalent represen-
tation (realization) of (1). Thus, they proposed a gener-
alization of the concept of strict equivalence (SE) of
regular matrix pencils (Gantmacher 1959) to the case
of general non-singular polynomial matrices and
showed that two AR representations described by
regular polynomial matrices of possibly different degrees

and dimensions are fundamentally equivalent if and
only if their fundamental equivalent matrix pencils are
strict equivalent. This fundamental equivalence transfor-
mation proposed in Vardulakis and Antoniou (2003)
generalizes the behaviour homomorphism presented in
Fuhrmann (2002), for non-proper discrete time AR
representations of the form (1) over a finite time inter-
val. However the main disadvantage of this transforma-
tion is that it does not provide a closed formula relating
the polynomial matrices that describe the fundamentally
equivalent discrete time AR representations. Our main
interest in this paper is to propose that missing closed
formula by presenting a new equivalence transformation
named divisor equivalence. We shall prove that divisor
equivalence preserves both the finite and infinite elemen-
tary divisor structure of equivalent polynomial matrices
and thus extends the strict equivalence presented in
Gantmacher (1959) for matrix pencils to the general
polynomial matrix case.

The paper is organized as follows. Section 2 provides
the necessary mathematical background for the sub-
sequent sections. In x 3 a generalization of strict equiva-
lence to the polynomial matrix case, named divisor
equivalence, is introduced and certain properties of
divisor equivalence are obtained. In x 4 we show the
connection between the divisor equivalence transforma-
tion and the strict equivalence transformation that has
been presented by Gantmacher (1959) and Vardulakis
and Antoniou (2003). Finally, in x 5 we summarize our
results and propose directions for further research on
the subject.

2. Preliminary results

In what follows, R, C denote respectively the fields
of real and complex numbers and Z, Zþ denote respec-
tively the integers and non-negative integers. By R½s� and
R½s�p�m we denote the sets of polynomials and p�m
polynomial matrices respectively with real coefficients
and indeterminate s 2 C:

Definition 1: Let AðsÞ 2 R½s�p�m with rankRðsÞ AðsÞ ¼
r � min p,mð Þ: The values �i 2 C that satisfy the con-
dition rankC Að�iÞ < r are called finite zeros of AðsÞ:
Assume that A sð Þ has l distinct zeros �1, �2, . . . , �l 2 C,
and let

S�i
AðsÞðsÞ ¼

diagfðs� �iÞ
mi1 , . . . , ðs� �iÞ

mirg 0r,m�r

0p�r, r 0p�r,m�r

� �
be the local Smith form of A(s) at s ¼ �i, i ¼ 1, 2, . . . , l
where mij 2 Z

þ and 0 � mi1 � mi2 � � � � � mir: The
terms ðs� �iÞ

mij are called the finite elementary divisors
(f.e.d.) of A(s) at s ¼ �i: The total number n of the f.e.d.
of A(s) is n :¼

Pl
i¼1

Pr
j¼1 mij :
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Definition 2 (Gohberg et al. 1982, Vardulakis 1991):
The dual matrix of AðsÞ ¼ Aqs

q
þ Aq�1s

q�1
þ � � � þ

A0 2 R½��p�m, Aq 6¼ 0p;m, is defined as ~AAðsÞ :¼

sqAð1=sÞ ¼A0s
q
þ A1s

q�1
þ � � � þ Aq: Since rank ~AAð0Þ ¼

rankAq the dual matrix ~AAðsÞ of A(s) has zeros at s¼ 0
iff rankAq < r: Let rankAq < r and let

S0
~AAðsÞ

ðsÞ ¼
diagfs�1 , . . . , s�rg 0r,m�r

0p�r, r 0p�r,m�r

� �
ð3Þ

be the local Smith form of ~AAðsÞ at s¼ 0 where �j 2 Z
þ

and 0 � �1 � �2 � � � � � �r: The infinite elementary
divisors (i.e.d.) of A(s) are defined as the f.e.d. ��j of
its dual ~AAðsÞ at s¼ 0. The total number � of the i.e.d. of
A(s) is � ¼

Pr
i¼1 �i.

It is easily seen from Definition 2, that AðsÞ 2 R½s�p�m

has no i.e.d. iff rankAq ¼ r: The total number of f.e.d.
and i.e.d. is connected with the dimension and the
highest degree of all entries of a polynomial matrix as
follows.

Theorem 1 (Gohberg et al. 1982, Vardulakis and
Antoniou 2003): The total number nþ � of f.e.d. and
i.e.d. (orders accounted for) of a square polynomial matrix
AðsÞ 2 R½s�r�r is equal to rq, where q is the highest degree
of all the entries of A(s).

Define by Pðm, l Þ the class of ðrþmÞ � ðrþ lÞ poly-
nomial matrices where l and m are fixed integers and
r ranges over all integers which are greater than
max �m, � lð Þ. In the following, we will introduce some
essential transformations between polynomial matrices.

Definition 3 (Pugh and Shelton 1978): A1ðsÞ,A2ðsÞ 2
Pðm, lÞ are said to be extended unimodular equivalent
(e.u.e.) if there exist polynomial matrices MðsÞ,NðsÞ
such that

MðsÞ A2ðsÞ
� � A1ðsÞ

�NðsÞ

� �
¼ 0 ð4Þ

where the compound matrices

MðsÞ A2ðsÞ
� �

;
A1ðsÞ
�NðsÞ

� �
ð5Þ

have full rank 8s 2 C.
In Pugh and Shelton (1978), it was shown that the

transformations of strict system equivalence (s.s.e.)
(Rosenbrock 1970), and Furhmann system equivalence
(f.s.e.) (Fuhrmann 1976, 1977), is a specialization to
system matrices of the extended unimodular equiva-
lence. E.u.e. allows matrices of different dimensions
to be related and preserves the f.e.d. of the polynomial
matrices involved. Extending the notion of strict equiva-
lence for matrix pencils, defined in Gantmacher (1959),
to the case of square polynomial matrices we propose
the following definition.

Definition 4: Let A1ðsÞ,A2ðsÞ 2 R½s�m�l be two poly-
nomial matrices of the same degree. They are said to
be strictly equivalent (s.e.) if there exist non-singular
M 2 R

m�m,N 2 R
l�l such that MA1ðsÞN ¼ A2ðsÞ:

S.e. is actually a unimodular and bicausal equiva-
lence transformation and thus has the property of pre-
serving both the f.e.d. and i.e.d. of polynomial matrices.
Note however that it relates matrices of the same
dimensions and degree.

Definition 5 (Karampetakis et al. 1994): A1ðsÞ,A2ðsÞ 2
Pðm, lÞ are said to be f0g-equivalent if there exist rational
matrices MðsÞ,NðsÞ, having no poles at s¼ 0, such that
(4) is satisfied and where the compound matrices in (5)
have full rank at s¼ 0.

f0g-equivalence preserves only the f.e.d. of
A1ðsÞ,A2ðsÞ 2 Pðm, lÞ of the form si, i > 0.

3. A new notion of equivalence between square

and regular polynomial matrices

Considering Theorem 1, a necessary condition
for two polynomial matrices A1ðsÞ 2 R½��r1�r1 ,A2ðsÞ 2
R½��r2�r2 of degrees q1, q2 respectively, to have the
same f.e.d. and i.e.d., is that r1q1 ¼ r2q2. Therefore we
define the following set of polynomial matrices

Rc½s� :¼ AðsÞ defined in (2) with c ¼ rq, r � 2
� �

: ð6Þ

To clarify the definition of the set Rc½s�, we give the
following example.

Example 1:

A1ðsÞ ¼
1 s2

0 sþ 1

" #
2 R4½s�

A2ðsÞ ¼
1 s3

0 sþ 1

" #
2 R6½s�

A3ðsÞ ¼

s 0 �1 0

0 s 0 �1

1 0 0 s

0 1 0 1

2666664

3777775 2 R4½s�:

Before we continue to the main results of this sec-
tion, we will present a simple example to demonstrate
the limitations of the extended unimodular transforma-
tion to take into account both finite and infinite elemen-
tary divisor structures.

Example 2: Consider the polynomial matrices

A1ðsÞ ¼
1 s2

0 sþ 1

� �
2R4½s� ; A2ðsÞ ¼

1 s3

0 sþ 1

� �
2R6½s�

586 N. P. Karampetakis et al.



and the following e.u.e. transformation between them

1 0

0 1

� �
|fflfflfflffl{zfflfflfflffl}

MðsÞ

1 s2

0 sþ 1

" #
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

A1ðsÞ

¼
1 s3

0 sþ 1

" #
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

A2ðsÞ

1 s2 � s3

0 1

" #
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

NðsÞ

:

As the Smith forms of A1ðsÞ,A2ðsÞ are SC

A2ðsÞ
ðsÞ ¼

SC

A1ðsÞ
ðsÞ ¼ diag 1 sþ 1

� �
, both A1ðsÞ,A2ðsÞ have the

same f.e.d. ðsþ 1Þ: As the Smith forms of the duals of
A1ðsÞ,A2ðsÞ at s ¼ 0 are S0

~AA1ðsÞ
ðsÞ ¼ diag 1 s3

� �
and

S0
~AA2ðsÞ

ðsÞ ¼ diag 1 s5
� �

respectively, they have a different
i.e.d. ðs3 and s5 respectively).

The above example indicates that in order to ensure
that the associated transformation will preserve both
the f.e.d. and i.e.d. of A1ðsÞ and A2ðsÞ, further restric-
tions have to be imposed on the compound matrices
defined in (5).

In this respect we propose the following trans-
formation.

Definition 6: A1ðsÞ,A2ðsÞ 2 Rc½s� are said to be divisor
equivalent (d.e.) if there exist polynomial matrices
MðsÞ,NðsÞ, such that (4) is satisfied and the compound
matrices in (5) satisfy the two conditions

(i) they have full rank over RðsÞ and no f.e.ds.,

(ii) they have no i.e.ds.

Note that condition (i) is equivalent to the relative
primeness requirements of e.u.e. while (from the remark
after Definition 2) condition (ii) amounts to the require-
ment that the coefficient matrices corresponding to the
highest degree terms in each of the compound matrices
in (5) have respectively full row (column) rank over R:
The two conditions taken together are equivalent to the
requirement that the compound matrices in (5) are mini-
mal bases (Vardulakis 1991) of the rational vector spaces
spanned by their respective rows (columns). D.e. is a
special case of e.u.e. Our main interest is to prove that
d.e. leaves invariant the finite and infinite elementary
divisor structure of the polynomial matrices involved.
However, before we proceed with the main theorem of
this paper, we need to prove some preliminary results.
Firstly we need the following partial transitivity result.

Lemma 1: If A1ðsÞ,A2ðsÞ 2Rc½s� are d.e. and A2ðsÞ,A3ðsÞ 2
Rc½s� are s.e., then A1ðsÞ,A3ðsÞ 2Rc½s� are d.e.

Proof: See Appendix 1. œ

Given a polynomial matrix A(s), we can construct a
matrix pencil sE�A as in (7) (Gohberg et al. 1982,
p. 186) which possesses the same f.e.d. (Gohberg et al.

1982) and i.e.d. (Praagman 1991, Vardulakis and
Antoniou 2003) with A(s). In the following lemma it is
shown that the proposed pencil sE�A is actually d.e. to
the polynomial matrix A(s).

Lemma 2: With c ¼ rq, r� 2 the polynomial matrix
AðsÞ 2 Rc½s� defined in (2) and the matrix pencil

sE�A :¼

sIr �Ir 0 � � � 0 0
0 sIr �Ir � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � sIr �Ir
A0 A1 A2 � � � Aq�2 sAqþAq�1

2666664

37777752Rc½s�

ð7Þ

are d.e.

Proof: See Appendix 2. œ

The required conditions of d.e. give rise to certain
degree conditions on the left and right transforming
matrices as we can see in the following lemma.

Lemma 3:

(a) Let A1ðsÞ,A2ðsÞ 2 Rc½s� with dimensions m�m
and ðmþ rÞ � ðmþ rÞ respectively where r 6¼ 0:
Then the two conditions of d.e. imply the following
degree conditions: degMðsÞ � degA2ðsÞ and
degNðsÞ � degA1ðsÞ, where deg½�� denotes the
highest degree among the polynomial entries of
the indicated matrix.

(b) Let A1ðsÞ,A2ðsÞ 2 Rc½s� have the same dimensions
r� r and therefore, since they belong to the same
class Rc½s�, the same degree q: If A1ðsÞ,A2ðsÞ are
d.e. then degMðsÞ ¼ degNðsÞ:

Proof: See Appendix 3. œ

We can always increase the degree of the polynomial
matrices A1ðsÞ,A2ðsÞ involved in the d.e. transformation
(4), without changing the initial f.e.d. and i.e.d. of
A1ðsÞ,A2ðsÞ, by multiplying both of them by certain
polynomial terms, as we can easily see in the following
lemma.

Lemma 4: If A1ðsÞðs� s0Þ
k
2 R

m�m
½s� has the same

f.e.d. and i.e.d. as A2ðsÞðs� s0Þ
k
2 R

m�m
½s�, where

s0 6¼ 0 is not a zero of either A1ðsÞ or A2ðsÞ, then A1ðsÞ
and A2ðsÞ have the same f.e.d. and i.e.d.

Proof: See Appendix 4. œ

Now, using the above lemmas we are in a position to
prove that the d.e. transformation leaves invariant both
the finite and infinite elementary divisors of the poly-
nomial matrices involved in the transformation.

Theorem 2: A1ðsÞ,A2ðsÞ 2 Rc½s� are d.e. iff they have
the same finite and infinite elementary divisors.
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Proof: Sufficiency: (a) According to condition (i) of
d.e., A1ðsÞ and A2ðsÞ are also e.u.e. and thus have the
same f.e.d.

(b) In the sequel we prove that the second condition
of d.e. implies that the two polynomial matrices possess
the same i.e.d. In the following proof we distinguish two
cases: (i) A1ðsÞ and A2ðsÞ 2 Rc½s� have different dimen-
sions and (ii) A1ðsÞ and A2ðsÞ 2 Rc½s� have the same
dimensions.

(i) Let A1ðsÞ and A2ðsÞ 2 Rc½s� with dimensionsm�m
and ðmþ rÞ� ðmþ rÞ respectively where r 6¼ 0: Then,
from Lemma 3(a) the first two conditions of d.e. imply
the following degree conditions degMðsÞ � degA2ðsÞ and
degNðsÞ � degA1ðsÞ: Let also dMA2

¼ deg MðsÞ A2ðsÞ
� �

and dA1N
¼ deg A1ðsÞ

T
�NðsÞT

� �T. Then, by setting
s¼ 1=w, equation (4) may be rewritten as

Mð1=wÞ A2ð1=wÞ
� � A1ð1=wÞ

�Nð1=wÞ

� �
¼ 0 ð8Þ

and then premultiplying and postmultiplying (8) by
wdMA2 and wdA1N respectively as

wdMA2 Mð1=wÞ A2ð1=wÞ
� � A1ð1=wÞ

�Nð1=wÞ

� �
wdA1N ¼ 0

() gMðwÞ A2ðwÞ
� �
MðwÞ A2ðwÞ

� � gA1ðwÞ

�NðwÞ

� �
A1ðwÞ

�NðwÞ

� �
¼ 0 ð9Þ

where with g we denote the dual matrix. Since
dMA2

� deg A2ðsÞ½ � and dA1N � deg A1ðsÞ½ � equation (9)
may be rewritten as

M0
ðwÞ ~AA2ðwÞ

� � ~AA1ðwÞ
�N 0

ðwÞ

� �
¼ 0: ð10Þ

The compound matrix MðsÞ A2ðsÞ
� �

ðrespectively ½ A1ðsÞ
�NðsÞ

�Þ

has no i.e.d. and therefore its dual ½M0
ðwÞ ~AA2ðwÞ�

ðrespectively ½
~AA1ðwÞ

�N 0ðwÞ
�Þ has no finite zeros at w¼ 0.

Therefore relation (10) is a f0g-equivalence relation
which preserves the f.e.d. of ~AA1ðwÞ, ~AA2ðwÞ at w¼ 0 or
otherwise the i.e.d. of A1ðsÞ,A2ðsÞ.

(ii) Let A1ðsÞ,A2ðsÞ 2 R½s�m�m with the same degree
d: Then according to Lemma 3(b) dt ¼ degMðsÞ ¼
degNðsÞ. In the case where dt � d then the proof is the
same as the one presented in (i) above. Consider now the
case where dt > d: Let s0 6¼ 0 not a zero of either A1ðsÞ
or A2ðsÞ: Then

MðsÞ A2ðsÞðs� s0Þ
dt�d

� � A1ðsÞðs� s0Þ
dt�d

�NðsÞ

� �
¼ 0 ð11Þ

is an e.u.e. relation which implies that A2ðsÞðs� s0Þ
dt�d

and A1ðsÞðs� s0Þ
dt�d have the same f.e.d. Therefore

according to Lemma 4, A1ðsÞ and A2ðsÞ have the same
f.e.d. Taking the duals of (11) we have

~MMðsÞ A
g

2ðsÞðs� s0Þ
dt�d

2ðsÞðs� s0Þ
dt�d

h i
A

g
1ðsÞðs� s0Þ

dt�d
1ðsÞðs� s0Þ

dt�dg�NðsÞ�NðsÞ

" #
¼ 0:

ð12Þ

Equation (12) is a f0g-equivalence relation, so

A
g

2ðsÞðs� s0Þ
dt�d

2ðsÞðs� s0Þ
dt�d and A

g
1ðsÞðs� s0Þ

dt�d
1ðsÞðs� s0Þ

dt�d

have the same f.e.d. at 0 and thus A2ðsÞðs� s0Þ
dt�d and

A1ðsÞðs� s0Þ
dt�d have the same i.e.d., i.e. A2ðsÞ and A1ðsÞ

have the same i.e.d. (Lemma 4).

Necessity: Assume that A1ðsÞ,A2ðsÞ 2 Rc½s� have iden-
tical f.e.d. and i.e.d. Then according to Lemma 2 A1ðsÞ
and A2ðsÞ are d.e. to matrix pencils sE1 � A1 and
sE2 � A2 of the form (7) and vice versa. The pencils
sE1 � A1 and sE2 � A2 are also strictly equivalent to
their respective Weierstrass forms denoted thereafter
by W sE1 � A1ð Þ and W sE2 � A2ð Þ (Gantmacher 1959):
Since sE1 � A1, sE2 � A2 2 Rc½s� and share the same
f.e.d. and i.e.d. they have the same Weierstrass form:
sEw � Aw � W sE1 � A1ð Þ � W sE2 � A2ð Þ. Repeated use
of the transitivity property proved in Lemma 10 shows
that A1ðsÞ is divisor equivalent to sE2 � A2. This argu-
ment is summarized in the figure.

A1(s) sE1-A1 sEw-Aw sE2-A2 A2(s)

Divisor equivalent

Lemma 1

Divisor equivalent

Lemma 1

Therefore there exist polynomial matrices AðsÞ,BðsÞ
such that the transformation

AðsÞ sE2 � A2ð Þ ¼ A1ðsÞBðsÞ ð13Þ

is a d.e. transformation. The polynomial matrices
sE2 � A2 and A2ðsÞ are also connected, according to
Lemma 3, through the following divisor equivalent
transformation

0
sI � L0

� 	
A2ðsÞ ¼ sE2 � A2ð Þ

sI � L0

sI � L0ð Þs

..

.

sI � L0ð Þsq2�1

0BBB@
1CCCA ð14Þ

where q2 ¼ deg A2ðsÞ½ � and sI � L0 as defined in
Lemma 2. Premultiplying (14) by A(s) and then using
(13) we get the transformation

AðsÞ
0

sI�L0ð Þ

� 	
 �
A2ðsÞ¼A1ðsÞ BðsÞ

sI�L0

sI�L0ð Þs

..

.

sI�L0ð Þsq2�1

0BBB@
1CCCA

8>>><>>>:
9>>>=>>>;:

ð15Þ

We divide both sides with ðs� s0Þ and thus we have the
transformation
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AðsÞ
0

I

� 	
 �
A2ðsÞ ¼ A1ðsÞ BðsÞ

I

sI

..

.

sq2�1I

0BBBB@
1CCCCA

8>>>><>>>>:

9>>>>=>>>>;

() AðsÞ
0

I

� 	
A1ðsÞ

� � A2ðsÞ

�BðsÞ

I

sI

..

.

sq2�1I

0BBBB@
1CCCCA

26666664

37777775 ¼ 0:

ð16Þ

We shall show in the sequel that (16) is a d.e. transfor-
mation. In order to prove the absence of finite and
infinite elementary divisors of the compound matrices

AðsÞ
0
I

� 	
A1ðsÞ

� �
and

A2ðsÞ

�BðsÞ

I
sI
..
.

sq2�1I

0BB@
1CCA

266664
377775 ð17Þ

it is enough to prove that (17) possesses the same finite
and infinite elementary divisors respectively as

AðsÞ A1ðsÞ
� �

and
sE2 � A2

�BðsÞ

� �
ð18Þ

since according to the d.e. transformation (13), the
matrices in (18) have neither finite nor infinite elemen-
tary divisors.

(i) Our first goal is to prove that the matrices

sE2 � A2

�BðsÞ

� �
and

A2ðsÞ

�BðsÞ

I
sI
..
.

sq2�1I

0BB@
1CCA

266664
377775 ð19Þ

possess the same finite and infinite elementary divisors.

(i–a) Same finite elementary divisors.
Consider the transformation

0
I

� 	
0 sE2 � A2

0 I �BðsÞ

24 35

A2ðsÞ

�BðsÞ

I
sI
..
.

sq2�1I

0BB@
1CCA

�

I
sI
..
.

sq2�1I

0BB@
1CCA

266666666666664

377777777777775
¼ 0:

It is easily seen (see also (7)) that both compound
matrices of the above transformation include the unit
matrix and therefore do not possess finite elementary

divisors. Therefore the matrices (19) are e.u.e. and
thus have the same finite elementary divisors.

(i–b) Same infinite elementary divisors.
Consider now the transformation

0

sI � L0ð Þ

� 	
0 sE2 � A2

0 sI � L0ð Þ �BðsÞ

24 35

�

A2ðsÞ

�BðsÞ

I

sI

..

.

sq2�1I

0BBBB@
1CCCCA

�

I

sI

..

.

sq2�1I

0BBBB@
1CCCCA sI � L0ð Þ

2666666666666666664

3777777777777777775

¼ 0: ð20Þ

The highest coefficient matrices of the above compound
matrices are

0
0
..
.

0
I

0
0
..
.

0
0

I 0 � � � 0 0
0 I � � � 0 0
..
. ..

. . .
. ..

. ..
.

0 0 � � � I 0
0 0 � � � 0 Aq2

0 I �B1

26666664

37777775 and

A2, q2

�B1

0
0
..
.

I

0BB@
1CCA

�

0
0
..
.

I

0BB@
1CCA

266666666666664

377777777777775
where BðsÞ ¼ B0 þ B1s (Lemma 3(a)) and A2ðsÞ ¼ A2,0þ

A2,1sþ � � � þ A2, q2
sq2 with A2, q2

6¼ 0: The above highest
coefficient matrices have full row and column rank re-
spectively and therefore the compound matrices of (20)
have no i.e.d. Consequently the matrices in (19) are d.e.
and thus possess the same i.e.d.

(ii) Our second goal is to prove that the matrices

AðsÞ
0
I

� 	
A1ðsÞ

� �
and AðsÞ A1ðsÞ

� �
ð21Þ

possess the same finite and infinite elementary divisors.
(ii–a) Same finite elementary divisors.
Consider the transformation

I AðsÞ
0
I

� 	
A1ðsÞ

� �
¼ AðsÞ A1ðsÞ

� � 0
I

� 	
0

0 I

24 35:
We observe that both compound matrices of the

above transformation include the unit matrix and
therefore do not possess finite elementary divisors.
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Therefore the matrices (21) are e.u.e. and thus have the
same finite elementary divisors.

(ii–b) Same infinite elementary divisors.
Consider the transformation

sI � L0ð Þ
q1½ � AðsÞ

0

I

� 	
A1ðsÞ

� �

¼ AðsÞ A1ðsÞ
� � 0

sI � L0ð Þ
q1

� 	
0

0 sI � L0ð Þ
q1

264
375 ð22Þ

() sI � L0ð Þ
q1 AðsÞ A1ðsÞ

� �

�

AðsÞ
0

I

� 	
A1ðsÞ

�
0

sI � L0ð Þ
q1

� 	
0

0 � sI � L0ð Þ
q1

2666664

3777775 ¼ 0

where AðsÞ ¼ A0 þ A1sþ � � � þ Aq1
sq1 and A1ðsÞ ¼ A1, 0þ

A1, 1sþ � � � þ A1, q1
sq1 with A1, q1

6¼ 0: The highest coeffi-
cient matrices of the above compound matrices are

I Aq1 A1, q1

� �
and

Aq1

0

I

� 	
A1, q1

�
0

I

� 	
0

0 �I

2666664

3777775:
The above highest coefficient matrices have full row and
column rank respectively and therefore the compound
matrices in (20) have no i.e.d. Therefore the matrices in
(21) are d.e. and thus possess the same i.e.d.

Note: In the proof of the necessity of Theorem 2, it is
possible to start with the matrix A2ðsÞ and follow iden-
tical arguments to yield a transformation of divisor
equivalence between A2ðsÞ and A1ðsÞ, i.e. MðsÞA2ðsÞ ¼
A1ðsÞNðsÞ. œ

Remark 1: Examining closely the constructive proof of
Theorem 2, we can conclude that if A1ðsÞ,A2ðsÞ 2 Rc½s�
have the same f.e.d. and i.e.d. then we can find

MðsÞ :¼ AðsÞ
0
I

� 	
; NðsÞ :¼ BðsÞ

I
sI
..
.

sq2�1I

0BB@
1CCA

such that MðsÞA1ðsÞ ¼ A2ðsÞNðsÞ is a d.e. transformation
with deg½MðsÞ� � deg½A2ðsÞ� and deg½NðsÞ� � deg½A1ðsÞ�.

Remark 2: It is easily seen from the proof of the above
theorem that condition (i) of the d.e. guarantees the
invariance of the f.e.d., while condition (ii) guarantees
the invariance of the i.e.d. of the involved matrices.
Therefore in order to prove that two polynomial
matrices A1ðsÞ,A2ðsÞ 2 Rc½s� possess the same finite

(resp. infinite) elementary divisors it is enough to
prove that there exist polynomial matrices MðsÞ,NðsÞ
of appropriate dimensions that satisfy MðsÞA1ðsÞ ¼
A2ðsÞNðsÞ and condition (i) (resp. (ii)).

Corollary 1: The matrix pencil sE�A defined in (7) is
d.e. to the square polynomial matrix A(s) defined in (2)
and thus according to Theorem 2, A(s) and sE�A possess
the same f.e.d. and i.e.d. This has already been proved in a
different way in Praagman (1991) and Vardulakis and
Antoniou (2003).

Example 3: Consider the transformation

sþ 1 0

s2 0

0 �1

264
375

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
MðsÞ

s2 1

0 s3

" #
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

A1ðsÞ

¼

s2 1 0

0 s 1

0 0 s2

264
375

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
A2ðsÞ

1 0

s3 sþ 1

0 �s

264
375

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
NðsÞ

:

Note that A1ðsÞ,A2ðsÞ 2 R6½s�. The Smith forms of the
compound matrix MðsÞ A2ðsÞ

� �
and of its dual are

SC

MðsÞ A2ðsÞ
� �ðsÞ ¼ I4 0

� �
and

M1ðsÞ :¼
gMðsÞ A2ðsÞ

� �
MðsÞ A2ðsÞ

� �
¼

sþ s2 0
1 0
0 �s2

1 s2 0
0 s s2

0 0 1

24 35
with S0

M1ðsÞ
ðsÞ ¼ I3 0

� �
and thus the compound matrix

MðsÞ A2ðsÞ
� �

has no f.e.d. nor i.e.d. Also since

SC

A1ðsÞ
�NðsÞ

� �ðsÞ ¼ I2
0

� �

and

N1ðsÞ :¼
gA1ðsÞ

�NðsÞ

� �
A1ðsÞ

�NðsÞ

� �
¼

s s3

0 1

�s3 0

�1 �s2 � s3

0 s2

26666664

37777775
with

S0
N1ðsÞ

ðsÞ ¼
I2
0

� �
the compound matrix A1ðsÞ

T
�NðsÞT

� �T
possesses no

f.e.d. or i.e.d. Therefore A1ðsÞ and A2ðsÞ are divisor
equivalent and thus according to Theorem 2 they should
have the same f.e.d. and i.e.d. Checking their Smith
forms
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SC

A1ðsÞ
ðsÞ ¼

1 0
0 s5

� �
; SC

A2ðsÞ
ðsÞ ¼

I3 0
0 s5

� �
and

S0
~AA1ðsÞ

ðsÞ ¼
1 0
0 s

� �
; S0

~AA2ðsÞ
ðsÞ ¼

I3 0
0 s

� �
this is indeed confirmed.

As is shown in the following theorem regarding the
special case of matrix pencils with the same dimension,
strict equivalence and d.e. define the same equivalence
class.

Theorem 3: Let sE1 � A1, sE2 � A2 2 R s½ �m�m with
det sEi � Ai½ � 6¼ 0, i ¼ 1, 2: Then sE1 � A1, sE2 � A2 are
strictly equivalent iff they are d.e.

Proof: Sufficiency: If sE1 � A1, sE2 � A2 are strictly
equivalent then there exist non-singular matrices
M,N 2 R

m�m such that

M sE1 � A1½ �N ¼ sE2 � A2½ �

¼) M sE1 � A1½ � ¼ sE2 � A2½ �N�1:

Select s0 such that det s0Ei � Ai½ � 6¼ 0, i ¼ 1, 2
� �

and
construct the transformation

s� s0ð ÞM½ � sE1 � A1½ � ¼ sE2 � A2½ � s� s0ð ÞN�1
� �

:

It is easily seen that the above transformation is a d.e.
transformation.

Necessity: Suppose that sE1 � A1, sE2 � A2 are d.e.
Then according to Theorem 2, sE1 � A1 and sE2 � A2

possess the same f.e.d. and i.e.d. Therefore (Gantmacher
1959) the pencils sE1 � A1 and sE2 � A2 are strictly
equivalent. œ

Strict equivalence defines an equivalence class on the
set of square and non-singular pencils, and thus accord-
ing to the above theorem defines the same equivalence
class with d.e. However d.e. defines an equivalence class
in the more general set of polynomial matrices that
belong to Rc½s� as can be seen in the following theorem.

Theorem 4: Divisor equivalence is an equivalence rela-
tion on Rc½s�.

Proof: (i) Reflexivity.
Let AðsÞ 2 Rc½s� and consider the relation

s� s0ð Þ
deg A½ �I AðsÞ

� � AðsÞ
� s� s0ð Þ

deg A½ �I

� �
¼ 0

where s0 is not a zero of A(s). It is easily proved that the
above transformation is a d.e. transformation.

(ii) Symmetry.
Let A1ðsÞ,A2ðsÞ 2 Rc½s� be related by a d.e. transfor-

mation of the form

MðsÞA1ðsÞ ¼ A2ðsÞNðsÞ: ð23Þ

Then from Theorem 2, A1ðsÞ and A2ðsÞ have identical
f.e.d. and i.e.d. Hence from the converse of Theorem 2
(see note in the proof) there exists a d.e. relation between
A2ðsÞ and A1ðsÞ of the form (4).

(iii) Transitivity.
Suppose that A1ðsÞ,A2ðsÞ 2 Rc½s� are d.e. and that

A2ðsÞ,A3ðsÞ 2 Rc½s� are also d.e. Then from Theorem 2
A1ðsÞ and A3ðsÞ have identical f.e.d. and i.e.d. Hence,
from the converse of the Theorem 2, A1ðsÞ and A3ðsÞ
are divisor equivalent. œ

4. On the connection of d.e. and strict equivalence

In this section we make clear the connection between
the proposed transformation of d.e. and the transforma-
tions of strict equivalence and fundamental equivalence
defined in Vardulakis and Antoniou (2003).

Definition 7 (Vardulakis and Antoniou 2003): A1ðsÞ,
A2ðsÞ 2 Rc½s� are called strictly equivalent iff their equiva-
lent matrix pencils sE1 � A1 2 R½s�c�c and sE2�

A2 2 R½s�c�c proposed in (7) are strictly equivalent
according to Definition 5.

The coincidence of divisor equivalence and strict
equivalence (Gantmacher 1959 and Definition 7) is
proved in the following theorem.

Theorem 5: Strict equivalence (Definition 7) belongs to
the same equivalence class as d.e.

Proof: Necessity: Suppose that A1ðsÞ, A2ðsÞ are d.e.
Then

sE1 � A1 ~
d:e

A1ðsÞ ~
d:e

A2ðsÞ ~
d:e

sE2 � A2:

Therefore from the transitivity property of d.e. sE1�

A1 ~
d:e

sE2 � A2:However d.e. coincides with strict equiva-

lence in matrix pencils as has already been proved in

Theorem 3 and thus the two pencils are also strictly

equivalent.

Sufficiency: Suppose that A1ðsÞ and A2ðsÞ are strictly
equivalent according to Definition 7. Then

A1ðsÞ ~
d:e

sE1 � A1 ~
d:e

s:e:
sE2 � A2 ~

d:e

A2ðsÞ:

Then from the transitivity property of d.e.

A1ðsÞ ~
d:e

A2ðsÞ: œ

The geometrical meaning of strict equivalence, pre-
sented in Vardulakis and Antoniou (2003), is given in
the sequel.
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Definition 8 (Vardulakis and Antoniou 2003): Two
discrete time AR representations of the form

Ai �ð Þ�iðkÞ ¼ 0, k ¼ 0, 1, 2, . . . ,N � deg½AiðsÞ� � 0,

i ¼ 1, 2

where � is the shift operator, Aið�Þ 2 R½��ri�ri ,
det½AiðsÞ� 6¼ 0, i ¼ 1, 2 will be called fundamentally
equivalent (f.e.) over the finite time interval k ¼ 0, 1,
2, . . . ,N � max deg½AiðsÞ�

� �
iff there exists a bijective

polynomial map between their respective behaviours
BA1 �ð Þ,BA2 �ð Þ.

Note that fundamental equivalence constitutes an
extension of the behaviour homomorphism presented
in Fuhrmann (2001, 2002, 2003), for the case of non-
proper discrete time AR representations, when studied
in a closed time interval. Fundamental equivalence
(Definition 8) is the geometric interpretation of strict
equivalence (Definition 7) as can be easily seen in the
following theorem.

Theorem 6: (Vardulakis and Antoniou 2003): Two
discrete time AR representations of the form (1) are strict
equivalent iff they are fundamentally equivalent.

Based on the above theorem, we can now extend the
results presented in Theorem 5.

Theorem 7: Two discrete time AR representations of the
form (1) are d.e. iff they are fundamentally equivalent.

Proof: The theorem can be proved using Theorem 5
and Theorem 6. œ

Therefore, strict equivalence, fundamental equiva-
lence and d.e. define the same equivalence classes. In
the following remark we give a geometrical meaning of
the right transforming matrix N(s) involved in the d.e.
transformation (4).

Remark 3: Suppose that A1ðsÞ,A2ðsÞ 2 Rc½s� are d.e.
Then there exist polynomial matrices MðsÞ,NðsÞ such
that

Mð�ÞA1ð�Þ ¼ A2ð�ÞNð�Þ: ð24Þ

By multiplying (24) on the right by �1ðkÞ we get

Mð�ÞA1ð�Þ�1ðkÞ ¼ A2ð�ÞNð�Þ�1ðkÞ

¼) 0 ¼ A2ð�ÞNð�Þ�1ðkÞ

¼) 9�2ðkÞ 2 BA2 �ð Þ

such that �2ðkÞ ¼ Nð�Þ�1ðkÞ: ð25Þ

According to the conditions of d.e.,

A1ð�Þ
T

�Nð�ÞT
� �T

has full rank and no f.e.d. or
i.e.d. This implies (Karampetakis 2004) that �1ðkÞ ¼ 0.
Therefore the map defined by the polynomial matrix

Nð�Þ : BA1 sð Þ ! BA2 sð Þ j�1ðkÞ 7!�2ðkÞ is injective. Using
the symmetry property of d.e. we can find polynomial
matrices M̂Mð�Þ, N̂Nð�Þ such that M̂Mð�ÞA2ð�Þ ¼ A1ð�ÞN̂Nð�Þ
is a d.e. relation. Then in a similar manner we get
that the map defined by the polynomial matrix
N̂Nð�Þ : BA2 sð Þ ! BA1 sð Þ j�2ðkÞ 7!�1ðkÞ is also injective.
Therefore both maps are bijections between
BA1 �ð Þ,BA2 �ð Þ:

Note that the results of the above remark, con-
cerning the right transforming matrix N(s), come in
full accordance with the ones presented by
Fuhrmann (2002, Theorem 4.3). The only difference
is that here we are referring both to the purely causal
and purely anticausal part of the behaviour of non-
proper discrete time AR representation over a closed
time interval, while the result in Fuhrmann (2002)
refers only to the causal part of the behaviour, but
to a more general class of discrete time AR represen-
tations (where the polynomial matrices are not necess-
arily square and non-singular) and with time axis
equal to Z

þ (and not a closed time interval).
However, since the study of the causal part of the
behaviour over the closed time interval comes in
accordance with the study of the causal part of the
behaviour according to Fuhrmann on Z

þ, half of our
results coincide with the ones of Fuhrmann (2002), i.e.
full rank and coprimeness of the compound matrices
in divisor equivalence ensures the isomorphism
between the causal parts of the behaviours. The
extra condition arising in divisor equivalence, i.e. the
absence of infinite elementary divisors, ensures that an
isomorphism also exists, between the anticausal parts
of the behaviours of the equivalent systems.

5. Conclusions

It is known (Antoniou et al. 1998) that linear
homogeneous matrix difference equations of the
form (1) exhibit a forward in time behaviour which
is due to the finite elementary divisors of A �ð Þ and a
backward in time behaviour which is due to the infinite
elementary divisors of A �ð Þ. On the other hand con-
tinuous time systems of the respective form, i.e.
A �ð Þ� tð Þ ¼ 0 with � :¼ d=dt, exhibit smooth and
impulsive behaviour (Vardulakis 1991) due respec-
tively to the finite and infinite zero structure of
A �ð Þ. Since the behaviour of continuous and discrete
time systems depends on different structural invariants
of the polynomial matrix describing such systems, a
new transformation, between square and non-singular
polynomial matrices of different degrees and dimen-
sions, termed divisor equivalence, has been introduced.
It is shown that divisor equivalence is an equivalence
relation on a specific set of polynomial matrices and
has the special property of preserving both the finite
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and the infinite elementary divisors of the polyno-
mial matrices involved in the transformation. For
the special case of matrix pencils with the same
dimension, divisor equivalence gives rise to the same
equivalence class defined through the transformation
of strict equivalence and extends it in the case of
general polynomial matrices. Furthermore, it is shown
that divisor equivalence constitutes a closed form to
test fundamental equivalence of discrete time AR
representations.

Although a study of the backward behaviour of
regular discrete time systems of the form (1) has
been carried out by Antoniou et al. (1998), there are
still no results concerning the connection of the back-
ward in time behaviour of regular discrete time poly-
nomial matrix descriptions driven by some non-zero
inputs (ARMA models) with the structural invariants
of the system. Further research will establish the con-
nection between properties of discrete time polynomial
matrix descriptions and the structural invariants of the
systems related with both finite and infinite elementary
divisors of certain polynomial matrices. Divisor
equivalence will then play a key role in the study of
equivalence between system matrices as full equivalence
(Hayton et al. 1990) has played in the study of
equivalence between continuous time polynomial
matrix descriptions.

A new approach of the past decade has been the
so-called ‘behavioural approach’ introduced by Willems,
where the behaviour of a linear, time invariant,
discrete time dynamical system is defined as the
set of solutions of a system of the form (1) where
now the polynomial matrix A �ð Þ is non-regular,
i.e. A �ð Þ 2 R½��r�m with r 6¼ m or A �ð Þ 2 R½��r�r with
rankR �ð Þ A �ð Þ < r. In that case, not only the finite
and infinite elementary divisors but also the right
minimal indices of A �ð Þ play a crucial role in both
the forward and the backward behaviour of the AR-
representation, while the left minimal indices of A �ð Þ

influence the existence of a solution of the AR
representation under specific initial conditions
(Karampetakis 2004). In order to treat equivalence
between non-regular polynomial matrices in a manner
similar to that of regular polynomial matrices, an
extension of the notion of divisor equivalence is
needed. The authors have presented in Karampetakis
and Vologiannidis (2003) a new equivalence transfor-
mation between non-regular polynomial matrices by
using a twofold approach: (a) the ‘homogeneous poly-
nomial matrix approach’ where in place of polynomial
matrices we have studied their homogeneous poly-
nomial matrix forms and use 2-D equivalence trans-
formations in order to preserve their infinite
elementary divisor structure, and (b) the ‘polynomial
matrix approach’ where an additional condition has

been added on divisor equivalence in order to treat

non-regular polynomial matrices. However, in contrast

to divisor equivalence presented in this work, both

equivalence transformations presented in Karampetakis

and Vologiannidis (2003) give necessary (and not suf-

ficient) conditions in order for two non-regular poly-

nomial matrices to possess the same finite and infinite

elementary divisor structure. Further research will be

carried out on finding sufficient conditions for two

non-regular polynomial matrices to possess the same

finite and infinite elementary divisor structure. Since

the results concerning the fundamental equivalence

of AR representations presented in Vardulakis and

Antoniou (2003) were applied only to regular poly-

nomial matrices, an extension of fundamental equiva-

lence to non-regular polynomial matrices and its

connection with divisor equivalence has to be estab-

lished. Additional invariants, apart from the finite and

infinite elementary divisors, may also be included in

the extension of divisor equivalence since the right and

left null structure of non-regular polynomial matrices

play a key role in the behaviour of non-regular AR

representations. Another application of divisor equiva-

lence could be on the study of the equivalence of AR

representations according to the ‘behavioural

approach’ of Willems. According to Willems, two

AR representations are equivalent if and only if they

share the same behaviour. In the particular case where

only the forward behaviour of the AR representations

is of interest, then ‘unimodular equivalence’ between

the corresponding polynomial matrices is the transfor-

mation that we are looking for. However, in the case

where both forward and backward behaviour is under

research, an extension of unimodular equivalence is

needed, following the lines of divisor equivalence.

Similar approaches can be applied to the wider class

of normalized autoregressive moving average

(NARMA) representations presented in Fuhrmann

(2002).
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Appendix 1. Proof of Lemma 1

Let A1ðsÞ,A2ðsÞ 2 Rc½s� be related by the divisor
equivalence transformation

M1ðsÞA1ðsÞ ¼ A2ðsÞN1ðsÞ ð26Þ

while A2ðsÞ,A3ðsÞ 2 Rc½s� are related by the strict equiva-
lence transformation

M2A2ðsÞ ¼ A3ðsÞN2 ð27Þ

where M2,N2 are constant and non-singular matrices
(therefore A2ðsÞ and A3ðsÞ have the same dimensions).
Premultiplying relation (26) by M2 and using relation
(27) we get the transformation

M2M1ðsÞ½ �A1ðsÞ ¼ A3ðsÞ N2N1ðsÞ½ �

() M2M1ðsÞ A3ðsÞ
� � A1ðsÞ

�N2N1ðsÞ

� �
¼ 0: ð28Þ

Our main goal is to prove that the compound matrices
involved in (28) satisfy the properties of divisor equiva-
lence. We observe that

I 0
0 N2

� �
A1ðsÞ
�N1ðsÞ

� �
¼

A1ðsÞ
�N2N1ðsÞ

� �
I

and

M2 M1ðsÞ A2ðsÞ
� �

¼ M2M1ðsÞ A3ðsÞ
� � I 0

0 N2

� �
are strict equivalent transformations and thus the com-
pound matrices

M2M1ðsÞ A3ðsÞ
� �

;
A1ðsÞ

�N2N1ðsÞ

� �
ð29Þ

possess the same f.e.d. and i.e.d. with the respective
compound matrices

M1ðsÞ A2ðsÞ
� �

;
A1ðsÞ
�N1ðsÞ

� �
: ð30Þ

However, (26) is a divisor equivalence transformation
and thus the compound matrices (30) or equivalently
(29) do not possess any f.e.d. or i.e.d. Therefore, (28) is
a divisor equivalence transformation.
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Appendix 2. Proof of Lemma 2

Let s0 2 R such that det½Aðs0Þ� 6¼ 0, L0 :¼
diag s0, s0, . . . , s0½ � 2R

r�r so that sIr�L0,AðsÞ are
coprime. Then consider the identity

0ðq�1Þr, r

sIr � L0

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

MðsÞ

AðsÞ

¼

sIr �Ir 0 � � � 0 0

0 sIr �Ir � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � sIr �Ir

A0 A1 A2 � � � Aq�2 sAq þ Aq�1

266666664

377777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sE�A

�

Ir

sIr

..

.

sq�1Ir

266664
377775 sIr � L0ð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NðsÞ

: ð31Þ

In the compound matrix

M sð Þ sE �A
� �

¼

0

0

..

.

0

sIr �L0ð Þ

sIr �Ir 0 � � � 0 0

0 sIr �Ir � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � sIr �Ir

A0 A1 A2 � � � Aq�2 sAq þAq�1

266666664

377777775
firstly the rq-order minors det½sE � A� and det½LðsÞ�
where

LðsÞ :¼

0
0
..
.

0
sIr �L0ð Þ

�Ir 0 � � � 0 0
sIr �Ir � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � sIr �Ir
A1 A2 � � � Aq�2 sAq þAq�1

2666664

3777775
are coprime since A(s) and sIr � L0 are coprime.

Secondly it is easily seen that the rank of the highest
degree coefficient matrix of M sð Þ sE � A

� �
is

rankR ~MMð0Þ E
� �

¼ rankR

0

0

..

.

0

Ir

Ir 0 0 � � � 0 0

0 Ir 0 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � Ir 0

0 0 0 � � � 0 Aq

26666666664

37777777775
¼ rq

and therefore the compound matrix M sð Þ sE � A
� �

has
no i.e.d.

Now consider the second compound matrix

AðsÞ

�NðsÞ

" #
¼

AðsÞ

sIr � L0ð Þ

sIr � L0ð Þs

..

.

sIr � L0ð Þsq�1

266666664

377777775
:

First we can easily find two greatest order minors, i.e.

Q1ðsÞ ¼ AðsÞ and Q2ðsÞ ¼ sIr � L0

with

det Q1ðsÞ½ � ¼ det AðsÞ½ � and det Q2ðsÞ½ � ¼ det sIr � L0½ �:

However L0 is selected such that the greatest common
divisor of det Q1ðsÞ½ � and det Q2ðsÞ½ � is 1. Therefore the
compound matrix ½ AðsÞ

�NðsÞ
� has no f.e.d.

Second the highest degree coefficient matrix of ½ AðsÞ
�NðsÞ

�

i.e. ½AT
q 0 � � � Ir �

T has full column rank and thus the
compound matrix ½ AðsÞ

�NðsÞ
� has no i.e.d.

Thus, we have proved that the compound matrices
MðsÞ sE � A

� �
and ½ AðsÞ

�NðsÞ
� involved in (31) satisfy

the conditions of d.e., and therefore A(s) and sE�A
are d.e.

Similarly we can show that the following identity
between sE�A and A(s) is a d.e. transformation

½� sIr � L0ð Þsq�2E0ðsÞ � sIr � L0ð Þsq�3E1ðsÞ

� � � � sIr � L0ð ÞEq�2ðsÞ sIr � L0ð Þsq�1
�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MðsÞ

�

sIr �Ir 0 � � � 0 0

0 sIr �Ir � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � sIr �Ir

A0 A1 A2 � � � Aq�2 sAq þ Aq�1

2666666666664

3777777777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sE�A

¼ AðsÞ 0r, ðq�1Þr sIr � L0ð Þ
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NðsÞ

ð32Þ

where EiðsÞ ¼ Ei�1ðsÞ þ Ais, i ¼ 0, 1, . . . , q� 2 with
E0 ¼ A0 and L0 as defined above.
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Appendix 3. Proof of Lemma 3(a)

Assume that there exists M(s) with degMðsÞ >
degA2ðsÞ: In order for MðsÞ A2ðsÞ

� �
to have no i.e.d.

its highest coefficient matrix must be of full row rank,

i.e. rank Mhc 0
� �

¼ mþ r. This is impossible because

of the dimension of the matrix Mhc 2 R
ðmþrÞ�m: So

degMðsÞ � degA2ðsÞ.

Let degNðsÞ > degA1ðsÞ. Then there exists d 6¼ 0

such that degA1ðsÞ þ d ¼ degNðsÞ: Condition (i) of

d.e. implies that the matrices A1ðsÞ and A2ðsÞ are e.u.e.

so they have the same f.e.d. (and of course the same

number of f.e.d., i.e. SR A1ðsÞð Þ ¼ SR A2ðsÞð Þ where

SRðAðsÞÞ denotes the total number of f.e.d. of A(s)

(order accounted for). Taking the duals of the com-

pound matrices in (4) we get

M0
ðwÞ ~AA2ðwÞ

� � wd ~AA1ðwÞ
� ~NNðwÞ

� �
¼ 0: ð33Þ

Since the compound matrices in (5) have no i.e.d., the

compound matrices in (33) will have no f.e.d. at s¼ 0

and thus (33) is a f0g-equivalence relation. Therefore,
~AA2ðwÞ and wd ~AA1ðwÞ have the same f.e.d. at 0: Denoting

by SlðAðwÞÞ the total number of f.e.d. (order accounted

for) at l of A(w) we have

S0ð
~AA2ðwÞÞ ¼ S0ðw

d ~AA1ðwÞÞ > S0ð
~AA1ðwÞÞ

¼) S0ð
~AA2ðwÞÞ > S0ð

~AA1ðwÞÞ

¼) S1ðA2ðsÞÞ > S1ðA1ðsÞÞ: ð34Þ

According to our assumption A1ðsÞ,A2ðsÞ 2 Rc½s�: Thus
c ¼ S1ðA2ðsÞÞ þ SRðA2ðsÞÞ ¼ S1ðA1ðsÞÞ þ SRðA1ðsÞÞ or

equivalently since SRðA2ðsÞÞ ¼ SRðA1ðsÞÞ we have that

S1ðA2ðsÞÞ ¼ S1ðA1ðsÞÞ which contradicts (34).

Proof of Lemma 3(b): First we shall prove that if one

of the chosen transforming matrices has degree more

than d then degMðsÞ ¼ degNðsÞ: Let

dM ¼ degM, dN ¼ degN

DL ¼ deg MðsÞ A2ðsÞ
� �

; DR ¼ deg
A1ðsÞ

�NðsÞ

� �
d ¼ degA1ðsÞ ¼ degA2ðsÞ:

Then

gMðsÞ A2ðsÞ
� �
MðsÞ A2ðsÞ

� �
¼ w�dMþDL ~MMðwÞ w�dþDL ~AA2ðwÞ

� �
gA1ðsÞ

�NðsÞ

� �
A1ðsÞ

�NðsÞ

� �
¼

w�dþDR ~AA1ðwÞ

�w�dNþDR ~NNðwÞ

" #
:

From (4) taking the duals gives

w�dMþDL ~MMðwÞ w�dþDL ~AA2ðwÞ
� � w�dþDR ~AA1ðwÞ

�w�dNþDR ~NNðwÞ

" #
¼ 0:

ð35Þ

It is easily seen for the reasons explained in the proof
of the previous lemma that (35) is a f0g-equivalence
relation either between w�dþDL ~AA2ðwÞ and w�dþDR ~AA1ðwÞ
or between w�dMþDL ~MMðwÞ and w�dNþDR ~NNðwÞ and thus

S0ðw
�dMþDL ~MMðwÞÞ ¼ S0ðw

�dNþDR ~NNðwÞÞ

S0ðw
�dþDL ~AA2ðwÞÞ ¼ S0ðw

�dþDR ~AA1ðwÞÞ

( )

) S1ðMðsÞÞ þ ð�dM þDLÞm

¼ S1ðNðsÞÞ þ ð�dN þDRÞm ð36Þ

S1ðA2ðsÞÞ þ ð�d þDLÞm ¼ S1ðA1ðsÞÞ þ ð�d þDRÞm:

ð37Þ

Also (4) is an e.u.e. relation and

SRðMðsÞÞ ¼ SRNðsÞ ; SRðA2ðsÞÞ ¼ SRðA1ðsÞÞ: ð38Þ

But since A1ðsÞ and A2ðsÞ 2 Rc½s� we have

SRðA1ðsÞÞ þ S1ðA1ðsÞÞ ¼ SRðA2ðsÞÞ þ S1ðA2ðsÞÞ

¼)
ð37Þ

SRA1ðsÞ þ S1A2ðsÞ þ ð�d þDLÞm

� ð�d þDRÞm ¼ S1A2ðsÞ þ SRA2ðsÞ

¼)
ð38Þ

DL ¼ DR: ð39Þ

Assume that dM > d. Then

dM ¼ DL ¼
ð39Þ

DR ð40Þ

i.e. the degree of the compound matrix is equal to the
maximum degree of M(s) and A2ðsÞ which is dM. From
(39) and (40) we have that

DR ¼ dM > d:

The above inequality tells us that the degree of the right
compound matrix in (4) (the maximum degree of N(s)
and A1ðsÞ) is more than deg ðA1ðsÞÞ and thus DR ¼ dN .
Therefore we conclude that dM ¼ DL ¼ DR ¼ dN .
Similar proofs also apply in the case where we assume
that dN > d.

Second we shall show that if one of the chosen
transforming matrices has degree less than d then
degMðsÞ ¼ degNðsÞ: Suppose that N(s) has degree dN
such that dNðsÞ < dMðsÞ � d, i.e. note that from the
first part of the proof if one of the matrices has degree
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less than d then the other one cannot have degree more
than d: Then by equating the coefficient matrices of the
highest degrees of s in (4) we get that

MhcAhc
1 ¼ 0 ð41Þ

where Ahc denotes the highest column degree coefficient
matrix of the polynomial matrix A(s). Since dNðsÞ < d
we have that Ahc

1 has full column rank and therefore
dimðKerðMhc

ÞÞ ¼ m: Thus rankðMhc
Þ ¼ 0 and therefore

degMðsÞ < dM which contradicts our second assump-
tion.

Appendix 4. Proof of Lemma 4

The proof is trivial having in mind that (a) the f.e.d.
of A1ðsÞðs� s0Þ

k is the f.e.d. of A1ðsÞ plus m divisors of
the form ðs� s0Þ

k and (b) the i.e.d. of A1ðsÞðs� s0Þ
k
2

R
m�m

½s�, where s0 6¼ 0 is not a zero of A1ðsÞ, is exactly
the i.e.d. of A1ðsÞ.
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