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Editorial

Special issue on the use of computer algebra systems
for computer aided control system design

N. P. KARAMPETAKIS* and A. I. G. VARDULAKIS (Eds)

The importance of the continuing and growing need in the systems and control community for

reliable algorithms and robust numerical software for increasingly challenging applications
is well known and has already been reported elsewhere (IEEE Control Systems Magazine,
Vol. 24, Issue 1). However, we have all had the experience of working on a mathematical

project where an increased number of symbolic manipulations was needed. In a simple case,
the required computation might have been to compute the Laplace transform or the inverse
Laplace transform of a function, or to find the transfer function matrix for a given system

topology where parameters are included. In a more demanding situation the required
computation might have been to find the parametric family of solutions of a polynomial
matrix Diophantine equation resulting from a variety of control problems such as those

associated with stabilization, decoupling, model matching, tracking and regulation, or to
compute the Smith McMillan form of a rational transfer function matrix in order to obtain
a better insight into a number of structural properties of a system. The desire to use a
computer to perform long and tedious mathematical computations such as the above led to

the establishment of a new area of research whose main objective is the development: (a) of
systems (software and hardware) for symbolic mathematical computations, and (b) of efficient
symbolic algorithms for the solution of mathematically formulated problems. This new subject

area is referred to by a variety of terms such as symbolic computations, computer algebra,
algebraic algorithms to name a few. During the last four decades this subject area has
accomplished important steps and it is still continuing its evolution process.

Computer algebra systems

Although Computer Algebra Systems (CAS) and

Numerical Software (NS) have not been designed and

developed for solving the same problems they could be

considered as complementary tools rather than adver-

saries. CAS can be classified according to their

functionality into (a) the general purpose CAS i.e.

systems that incorporate functions for most subject

areas of mathematics such as Macsyma, Reduce, Maple,

Mathematica, etc, and (b) special purpose CAS which

are systems that are specialized on a specific subject area

of mathematics i.e. systems such as CoCoA (deals with

computations in multivariate polynomial rings), DELiA

(differential equations) etc. Apart from these two main

categories there are also software packages of programs

that have been built independently either in the
programming environment of a general purpose CAS
or in a special purpose CAS. To name a few: CALI
is a REDUCE package that contains algorithms for
computations in commutative algebra, Control System
Professional (Bakshee 2003, Palancz et al. 2005) is a
MATHEMATICA package that contains algorithms
for control, NCAlgebra (Helton et al. 2000) is a non-
commutative algebra package that runs under
MATHEMATICA, SchematicSolver contains details
for drawing, solving, simulating and implementing a
system, Block Diagram Reduction Toolbox (drawing
and calculating the transfer function of a system in terms
of transfer functions of its components), PARADISE
is a MATLAB toolbox for the design and analysis of
robust control systems in which parametric models can
be specified using Simulink etc. In table 1 we give an
overview of some of the most important computer
algebra systems that have been developed during the
last four decades.*Corresponding author. Email: karampet@math.auth.gr
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Advantages and disadvantages of the CAS

It was reported in Higham et al. (2004) that when

solving a computational problem using a computer, the

accuracy of the computed solution depends on three

main factors:

(a) the machine arithmetic — i.e. the rounding unit and

the range of this arithmetic,
(b) the computation problem — i.e. the sensitivity of

its solution relative to changes in the data, and
(c) the computational algorithm — i.e. the numerical

stability of the algorithm used.

In a typical digital computer the specific word length

used in order to store a number is limited by the number

of distinct encodings which is typically 8, 16, 32, 36, 48

or 64 bits. These restrictions on the representation of

objects have a major impact on the precision and the

length of the numbers that can be used in numerical

computations and are not sufficient for the purpose of
symbolic computations. CAS use different techniques to
store multiprecision integers and rational numbers and
therefore are not suffering from precision and length
problems. The largest integer that can be used in a
typical digital computer that stores numbers in a word
of 32 bits is 231� 1¼ 2147483647 while in a CAS any
multiprecision integer d ¼ s

Pl�1
i¼0 dib

i can be represented
by the linked list:

s d0 d1 dl-1d

or by a dynamic array allocation:

sl d0 d1 . . . dl�1

� �
As an extension, a rational number can be represented
by a node of the form

LINK1 LINK2

Table 1. Computer algebra systems.

Year Computer algebra system Purpose

1961 SAINT Indefinite integration

1964–66 ALTRAN, MATHLAB Manipulation of polynomial and rational

functions
1966–67 SIN Symbolic integration

1968 – now REDUCE http://www.uni-koeln.de/REDUCE Starting from physics calculation. Solution for

large scale formal problems in mathematics,

science and engineering.
1968 MATHLAB-68 Improved version of Mathlab
1968 – now MACSYMA http://www.macsyma.com General purpose CAS
Late 1970’s muMATH
1980 – now MAPLE http://www.maplesoft.com General purpose CAS

1980 – now DERIVE General purpose CAS, improved version of

muMATH
1984 – now SINGULAR http://www.mathematik.uni-kl.de/

pub/�zca/

Singular

A CAS for polynomial computations

1988 – now SMP, MATHEMATICA http://www.wolfram.com General purpose CAS

1989 – now MuPAD http://www.mupad.de http://www.sciface.com General purpose CAS
1991 – now AXIOM http://www.nongnu.org/axiom Successor to Stratchpad. General purpose

CAS, that allows users to write algorithms

over general fields or domains
CAYLEY Group theory

Late 1980s MAGMA http://magma.maths.usyd.edu.au General purpose CAS for algebra, number

theory, algebraic geometry, algebraic

topology, algebraic combinatorics etc.
1986–1997 GAP, GAP 2 (2000) http://www-gap.mcs.st-and.ac.uk Groups, algorithms and programming,

computational discrete algebra
FORM High energy physics calculation

1990–1996 LiE http://www-math.univ-poitiers.fr/�maavl/LiE Lie algebra calculations
1992 MACAULAY 2 http://www.math.uiuc.edu/Macaulay2 Algebraic geometry and commutative algebra

Mid 1980s – 2000 PARI ftp://megrez.math.u-bordeaux.fr/pub/pari Number theory
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where LINK1 is a pointer to the numerator
multiprecision integer (either a linked list or an
allocation array) and similarly LINK2 is a pointer to
denominator. Therefore, one of the major advantages in
CAS is that we can use any precision that we want. On
the other hand, the above representation of multi-
precision numbers results into two disadvantages: (a)
more memory is needed to store numbers, and (b) more
computational power is required to process numbers.
These two main disadvantages make CAS not very
suitable for large scale problems, since, such problems,
require much memory and speed. However, nowadays
many attempts have been made for the solution of this
kind of problems by the investigation of faster
computational algorithms. By using multiprecision
numbers we can use any accuracy we want and therefore
avoid numerical stability problems as well as condition-
ing problems usually face in numerical packages.

Example 1: Consider the well known Kalman criterion
of controllability, which states that the matrix pair
A 2 R

n�n, B 2 R
n�m that corresponds to a state space

model with n states and m inputs, is controllable if and
only if the controllability matrix

‘ ¼ ðB AB A2B . . . An�1B Þ

has full rank. Following the example due to Paige
(1981):

A ¼ diag 20 2�1 2�2 . . . 2�9
� �

2 R
10�10

B ¼ 1 1 1 . . . 1
� �T

2 R
10�1:

The Kalman criterion does not yield a numerically
viable test for controllability although the above is a
symbolically viable test, as it is easily seen by the
following Mathematica program, since it uses infinite
precision or otherwise exact representation for integer
and rational numbers:

In the first line of the program we call the subpackage
‘‘MatrixManipulation’’ of Mathematica that is included
in the package ‘‘Linear Algebra’’. In 2nd and 3rd line
we create the matrix pair (A,B). In the 4th–5th line we
create the controllability matrix ‘ and in the 6th line
we compute the rank of ‘.

Example 2: Consider for example the Ackermann
formula which for a given matrix pair (A, B) evaluates
a matrix F such that the pencil sI� (AþBF) has specific
eigenvalues i.e.,

F ¼ ½ 0 0 . . . 1 �½B AB . . . An�1B �
�1aðAÞ;

where

aðsÞ ¼ det½sI� ðAþ BFÞ� ¼ sn þ a1s
n�1 þ � � � þ an

is the desired closed loop characteristic polynomial.
According to Svensson (1993), Ackermann’s method
in the MATLAB Control Toolbox yields a feedback
matrix of poor quality. More specifically, if we take a
random (A,B) pair with only ten states and one input
and assign random eigenvalues for the closed loop
characteristic polynomial a(s)¼ det[sI� (AþBF)] sym-
metrically located with respect to the real axis, then
using the MATLAB control function acker we recom-
pute the eigenvalues of AþBF with only 3 digits of
accuracy. However, by using the Mathematica program
in figure 1 we get the desired results without loss of any
accuracy, since Mathematica uses exact arithmetic and
does not suffer from loss of precision or significance
when manipulating integer and/or rational numbers.
It is known that, due to matrix multiplications (for the
controllability matrix) and inversion of the controll-
ability matrix ‘, the use of a numerical approach for the
computation of F leads to a severe loss of accuracy when
a numerical approach is being used. In the first line of
the Mathematica code above we call the subpackage
‘‘MatrixManipulation’’ of Mathematica that is included
in the package ‘‘LinearAlgebra’’. In the second and third
lines we create a random (A,B) pair with 10 states and
1 input. Each matrix has integer entries in the range
[�10, 10]. In the fourth line we create the controllability
matrix ‘. In the fifth line we create the matrix function
a(A) where a(s)¼ s3(sþ 1)6(sþ 3) and in the sixth line
we use the Ackermann formula. Below we give the {1, 1}
element of the matrix F in order to see the precision

In[1] := <<LinearAlgebra`MatrixManipulation`

In[2]:= A=Table[If[i == j, 2i-1, 0], {i, 1, 10}, {j, 1, 10}];

In[3]:= B=Table[{1}, {i, 1, 10}];

In[4]:= L=B;

In[5]:= Do [L= AppendRows [L, MatrixPower [A, i-1].B], {i, 2, 10}];

In[6]:= MatrixRank [L]

Out[6]:= 10

In[1] := <<LinearAlgebra`MatrixManipulation`
In[2]:= A=Table[Random[Integer,{-10,10}],
{i,1,10},{j,1,10}];
In[3]:= B=Table[Random[Integer,{-10,10}],
{i,1,10},{j,1}]; 
In[4]:= S1=B;Q=S1;Do[S1=A.S1; 
Q=AppendRows[Q,S1],{i,1,9}]; 
In[5]:= k=MatrixPower[A,3]. 
MatrixPower[A+IdentityMatrix[10],6]. 
(A+3*IdentityMatrix[10]); 
In[6]:= F={{0,0,0,0,0,0,0,0,0,1}}.Inverse[Q].k; 

Figure 1. Mathematica program.
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of the numbers that Mathematica is using for such kind

of computations.

Another main advantage of CAS is that of symbolic
computing or mixed symbolic-numeric computing, that
means you can handle symbolic objects in the same way
you handle numbers (determine determinants, inverses,
transposes etc. of a matrix containing symbolic
elements in contrast to a numerical environment, solve
polynomial Diophantine equations, solve exact linear
differential equations, find the transfer function matrices
of systems that may include parameters in their
descriptions etc.).

Example 3: Consider the state-space description of a
cart with inverted pendulums, for small j�1j and j�2j
given by

_x1ðtÞ

_x2ðtÞ

_x3ðtÞ

_x4ðtÞ

2
6664

3
7775 ¼

0 0 1 0

0 0 0 1
ðMþmÞg

Ml1

mg
Ml1

0 0

mg
Ml2

ðMþmÞg
Ml2

0 0

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

x1ðtÞ

x2ðtÞ

x3ðtÞ

x4ðtÞ

2
6664

3
7775

þ

0

0

� 1
Ml1

� 1
Ml2

2
66664

3
77775

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
B

uðtÞ

x1ðtÞ ¼ �1ðtÞ, x2ðtÞ ¼ �2ðtÞ, x3ðtÞ ¼ _�1ðtÞ, x4ðtÞ ¼ _�2ðtÞ,

where M is the mass of the cart, l1, l2 are the lengths
of the two inverted pendulums that both have bobs
of mass m.
We can define the above system using the Control

Systems Professional (CSP) package of Mathematica
as follows

In[1]: = <<ControlSystems’;
(*we call the CSP package *)

In[2]: = <<LinearAlgebra’
(* we call the Linear Algebra package *)

In ½3� :¼ a ¼

�
f0; 0; 1; 0g;

f0; 0; 0; 1g,

ðMþ mÞg

M l1
;
mg

M l1
; 0; 0

� �
,

mg

M l2
;
ðMþ mÞ g

M l2
; 0; 0

� ��
;

(* we define the matrix A *)

In½4� :¼ b ¼ f0g; f0g; �
1

Ml1

� �
, �

1

Ml2

� �� �
;

(* we define the matrix B *)
In[5]: = system = StateSpace[a, b];
(* we define the state space system with *)
(* the matrices A and B *)

Then we can easily check that the controllability
matrix of the above system is given by

In[6]: = L = ControllabilityMatrix[system]

Out½6� ¼ 0, �
1

Ml1
, 0, �

gðmþ MÞ

M2l21
�

gm

M2l1l2

� �
,

�

0, �
1

Ml2
, 0, �

gðmþ MÞ

M2l22
�

gm

M2l1l2

� �
,

�
1

M l1
, 0, �

gðmþ MÞ

M2l21
�

gm

M2l1l2
, 0

� �
,

�
1

M l2
, 0, �

gðmþ MÞ

M2l22
�

gm

M2l1l2
, 0

� ��

which has determinant
In[7]: = Factor[Det[L]]

Out½7� ¼ �
g2ðl1 � l2Þ

2

M4l41l
4
2

and thus the system is controllable iff l1 6¼ l2. It is easy
to find a state feedback of the form u(t)¼�Kx(t)þ �(t)
that will place the poles of the system to
{�1,�1,�1,�3} when l1 6¼ l2.

In[8]: = f = StateFeedbackGains[system,
{�1, �1, �1, �3},

Method ! Ackermann]

1027897963614676900913612319366785574966548367293686419492349

554443828532848987440054167718543237965615418863522971543021
:

M

m
m

u

θ1 θ2
l1

l2

Figure 2. Cart with two inverted pendulums.
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Out½8�¼
�g2ml1þg2ml2þg2Ml2þ12gMl1l2þ3Ml21l2

gðl1�l2Þ
,

��

�g2ml1�g2Ml1þg2ml2�12gMl1l2�3Ml1l
2
2

gðl1�l2Þ
,

2Ml1ð3gþ5l1Þl2

gðl1�l2Þ
, �

2Ml1l2ð3gþ5l2Þ

gðl1�l2Þ

��

In[9]: = Det[s * IdentityMatrix[4] � (a �

b.f)]//Factor
Out[9] = (1 + s)3 (3 + s)

Apart from the main advantage of the exact
arithmetic that CAS have, they also have other
advantages such as:

. interactivity–you give questions and directly get your
answers,

. arbitrary precision-arithmetic or even exact arithmetic
can be used to utilize some of the direct (but
numerically error proned) methods efficiently in
control system design–apart of the multiprecision
arithmetic you may use, you can select specific
precision for your work,

. visualization of your results–you can view in 2-D and
3-D graphics your results (XY plots, XYZ plots, polar
plots, log plots etc.) and import/export your results to
known graphics formats,

. the existence of hundrends of built-in procedures
covering both general and specialized areas of
mathematics such as Laplace transforms, Inverse
Laplace transforms, Z-transforms, inverse Z-trans-
forms, Smith form of polynomial matrices,

. the existence of unique high-level programming
languages and programming environments allowing
specific procedures to be written,

. they are usually available for different types of
computer platforms,

. CAS enables us to fully participate in the mathema-
tical exploration, by exploring different scenarios by
asking or being asked ‘‘what-if’’ type of questions,

. CAS help us to work with commutative or noncom-
mutative algebra problems, where numerical environ-
ments are not suitable,

CAS can also be used in research

. to test conjectures — supporting or refute conjectures,

. to help us to carry out the solutions steps of a
mathematical algorithm and avoiding the hand-
calculation mistakes,

. to help us to design and build a CAS for a specialized
task in our research area,

. to help us to customize and improve our algorithms
for the solution of a problem,

. to give us closed form solutions, and thus provide
deeper insight to the problem — we can find for

example the family of stabilizing compensators of a
system in a general parametric framework by retaining
the extra degrees of freedom as symbols appearing as
free parameters in the expression for the compensator.
These free parameters can be then optimized to
achieve specific goals associated with the internal
stability and/or robustness of the resulting closed loop
system,

. to assist in creating large mathematical tables such as
integral tables, tables of special functions and so on,

. to help us to explore new algorithms and techniques,

. to give us time to focus on ideas and not on
calculations — by helping us for example to theore-
tically analyse the structural properties of linear and
nonlinear systems when some parameters are included
in the model and we are looking for generic results
instead of particular solutions for specific values of
them.

However, CAS as part of their large memory require-
ments and relative poor performance are also accom-
panied by disadvantages such as

. difficulty to define the domain of the solution you are
looking for,

. contain particularities that are learned only with
experience,

. specialized areas are not covered by existing general
purpose CAS,

. difficulty to give exact answers in problems where a
closed form solution does not exist, e.g., exact solution
of a general fifth order polynomial equation or a
closed formula solution to a non-linear problem,

. difficulty to connect with other applications,

. difficulty to handle large scale problems due to the
their excessive computational resources requirement,
i.e. difficulty to handle large size of polynomials and
polynomial matrices with high degrees and/or large
dimensions,

. symbolic matrix analysis with a large number of
symbols may become impractical,

. may give meaningless generic answers.

For the reasons described above, a combination of
numerical and symbolic techniques is a very good way
to reduce simultaneously the loss of accuracy and the
required time (Hecker and Varga 2006, Karcanias et al.
2006, Söylemez and Ustoglu 2006)

CASs for engineering and control

CAS’s are currently successfully used in several areas of
engineering, such as robotics, non-linear dynamics,
computational fluid dynamics, aerodynamics, control
systems etc. For instance, computer algebra techniques

Editorial 1317



D
ow

nl
oa

de
d 

B
y:

 [H
E

A
L-

Li
nk

 C
on

so
rti

um
] A

t: 
16

:4
9 

14
 J

an
ua

ry
 2

00
8 

have been used in robotics problems (Grabmeier et al.
2003), such as the solution of the inverse kinematic
problem (Buchberger 1985, Lee and Liang 1988), and
the direct kinematic problem (Husty 1996, Higham et al.
2004) in the so-called ‘‘piano-movers’’ or collision
avoidance problems where a robot of certain geometry
is supposed to move a payload with given shape through
an environment containing a number of known obsta-
cles without collision (Canny 1987, Basu et al. 1996),
and to mechanical synthesis (Cohen and Heck 1995).
Recently, there has been a growing interest in the

application of CAS to control design and analysis.
Computer algebra techniques has been used for system
modelling (Gawtgrio 1993, Gawthrop and Balance
1997, Varga and Looye 1999), and system analysis and
synthesis methods. In Munro (1999) an up-to-date
treatment of the significant impact of symbolic comput-
ing in the field of control engineering is given. Computer
algebra techniques have been also used for the study
of nonlinear control systems (Buchberger 1985,
Akhrif and Blankenship 1987, van Essen 1994, Jager
1995, Kitamoto 1996, Lee and Liang 1988, Rothfuı́ et al.
1994, Schlacher and Kugi 2001, Higham et al. 2004),
linear control systems (Munro 1999, Ogunye 1996,
Ogunye and Penlidis 1996 and the references therein)
and special problems of control such as the optimal
control problem (Boulehmi and Calvet 1997,
Stoutemyer 1979), the pole assignment problem
(Söylemez and Munro 1998), the block reduction
problem (Söylemez and Ustoglu 2004), matrix inequal-
ities in control (de Oliveira and Helton 2003), solutions
of ARMA representations (Jones et al. 2003), computa-
tion of the Smith–McMillan Form (Munro and Tspekis
1994), modelling and simulation of robot manipulators
(Cetinkunt and Ittop 1992, Lin and Lewis 1994,
Pota and Alberts 1995) etc. In Ogunye (1996) a com-
prehensive CAS package SYMCON is described created
in Maple, for the design of multivariable discrete-
time control systems using the polynomial equation
approach. Wolfram Research the producer of one of
the most popular CAS, Mathematica, in 1996 released
the Control System Professional package (Bakshee
2003) — a conducive environment for solving control
engineering problems — that is now shipping with
numerous extensions as Control System Professional
Suite.

A new action group for symbolic computation

Due to the interest in the application of computer
algebra to control analysis and design an Action Group
for Symbolic Computations for CACSD has been
created as a part of the recently established IEEE
Control System Society’s Technical Committee on

Computer Aided Control Systems Design see (http://
anadrasis.math.auth.gr/cacsd/Home.htm. The main aim
of this action group is to establish an information
exchange forum for control related symbolic algorithms
and software. The web page given above includes an
open list with people, working in this subject area, calls
for invited sessions, conferences on symbolic computa-
tions for CACSD, list of software, links to other relative
web pages, and list of publications or even reprints, and
announcements that are relevant to this area of research.
The collection of all the above information: (a) would be
an advantage for the organization of invited sessions
at conferences as well as joint research projects, (b) will
make known the existing research groups and their
area of interests as well as existing CAS packages for
CACSD.

Objectives and contents of the special issue

This special issue aims not at just a collection of papers
on symbolic computations, but rather to address, at
least to some extent, a coherent vision of the role of
symbolic computations in control analysis and design
problems. The articles are written in a way so that
readers who are not experts in symbolic methods will be
able to learn about these techniques. Illustrative
examples are usually given to enlighten the main
points of the discussions.

The papers in this special issue can be grouped into
two categories: (a) the first 9 papers that use only
symbolic methods, and b) the last 4 papers that use
hybrid (mixed numerical-symbolic) methods.

Anai and Hara (2006) propose a new method of
parameter space design for robust control synthesis,
which guarantees the real stability radius constraint,
accomplished by using quantifier elimination (QE).

Dolecek and Mitra (2006), present a Matlab-based
symbolic sensitivity analysis of second-order IIR digital
filters.

Fotiou et al. (2006) present two algebraic methods
that help us to solve the parametric optimization
problem for optimal control problems arising in model
predictive control.

Jeannerod and Villard (2006), show that the asymp-
totically fastest known algorithms for some basic
problems on univariate polynomial matrices, such as
computation of rank, nullspace, determinant, generic
inverse and reduced form, can be reduced to two
computer algebra techniques, namely those of minimal
basis computations and matrix fraction expansion/
reconstruction, and to polynomial matrix
multiplication.

Lutovac and Tošić (2006) present the role of symbolic
computations in control engineering and signal
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processing. They provide illustrative application exam-
ples as appropriate to linear systems, non-linear systems,
algorithm development, modelling, and simulation.
M.C. de Oliveira and Helton (2006), describe

computer algebra algorithms, methodology and imple-
mentation which allow users to convert many system
problems to Linear Matrix Inequalities (LMIs). The
algorithms and ideas are implemented in a symbolic
non-commutative algebra package NCAlgebra and
the package NCGB that runs in Mathematica and has
been developed by the authors.
Perdon et al. (2006) describe how computational

algebra techniques can effectively use the geometrical
approach in dealing with dynamical systems over rings.
More specifically, they describe in details how to
practically solve the distrubance decoupling and the
block decoupling problem for delay differential systems,
by using the symbolic computational package CoCoA.
Söylemez and Ustoglu (2006) present some classical

control examples that illustrate the advantages of the
computer algebra in the process of control system
design, focusing to block diagram reduction, calculation
of stabilizing compensators, dominant pole assignment
and robust pole assignment.
Zheng et al. (2006) present the application of symbolic

algebra techniques to the Mathematica implementation
of a set of output-feedback pole assignment algorithms,
for systems characterized by parametric uncertainty.
Karcanias et al. (2006) emphasize the significance of

hybrid computations (mixed numerical and symbolic
computations) in complex problems such as the compu-
tation of the greatest common divisor (GCD) of several
polynomials that emerges in many fields of applications.
Liang and Chen (2006), develop a hybrid (symbolic

and numerical) method based on Matlab Symbolic
Math Toolbox (Moler and Costa 1976) to simulate some
typical problems of boundary control of fractional order
diffusion-wave equations.
Liu et al. (2006) describe the asymptotic time-scale

and eigenstructure assignment (AETA) algorithm,
which is one of the major applications of the structural
decomposition approach in linear systems theory. Then
they describe its software implementation in detail and
show how the ATEA algorithm has been developed in
such a way that facilitates the symbolic computation of
the resulting feedback gains. Finally, they use simple
applications to illustrate how the symbolic computation
of ATEA based state feedback laws leads to feedback
laws that are explicitly parameterized in the design
parameter.
Hecker and Varga (2006) present symbolic manipula-

tion techniques which are very useful in obtaining low-
order linear fractional transformation (LFT) representa-
tions of linear parametric models. The results presented
in this work are applied to the Research Civil Aircraft

Model (RCAM), which is one of the most complicated
existing parametric models in the literature, with great
success.

Dedication

This special issue is dedicated to the memory of
Professor Neil Munro who, very unfortunately, passed
away in July 2004. For many years Professor Munro
had dedicated his research to computer aided control
systems design, in particular robust control design for
linear systems using symbolic techniques with their
novel applications to control systems design including
pole assignment algorithms. This is indeed the area
originated by him and has received wide-spread atten-
tion in our control system research community. In the
last days of his life Professor Munro was working very
hard to build a toolbox for CAD of control systems
analysis and design in Mathematica.

For many years the had been the director of the
UMIST Control Systems Centre. He made significant
contributions to the development of the Centre and was
highly respected by the international control research
community. His contributions and papers on
Multivariable Control Theory, Computer Aided
Control Systems Design and Robust Design Methods
have been highly regarded by the community and his
papers have been very widely cited. He will be
remembered as an excellent scientist, a wise mentor,
a conscientious colleague and a reliable friend.

H. Wang

Control Systems Centre, School of Electrical and
Electronics Engineering, The University of Man-
chester, 1P.O. Box 88, Manchester M60 1QD, UK,
hong.wang@manchester.ac.uk.
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