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Abstract.

The known theories of transformations between polynomial matrices are extended to the case of rational
matrices. Specifically (3-equivalence of rational matrices with possibly different dimensions is defined which has
the property of preserving the zero structure of rational matrices in the region & € C U {oo}.
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1. Introduction.

Some open questions surround the existence of
transformations which preserve both the finite and
infinite zero structure of polynomial matrices and
more generally for rational matrices of different
dimensions. Hayton et.al. (1988) proposed full
equivalence {f.e.) for the special case of polynormal
matrices, which includes both eziended unimodular
equivalence (eu.e.) (Pugh & Shelton 1978) and
extended causal eguivalence (e.c.e.) (Walker 1988)
within one single transformation. It thus preserves
both the finite and infinite zero structure of
pelynomial matrices with different dimensions.

In this paper an extension in two separate
senses of the above ideas is presented. The
first extension is the development of a general
equivalence transformation for rational matrices
which are not necessarily of the same dimension.
The second extension concerns the reference of the
transformation to a specific region 2 C CU {oc} and
the confinement of its invariants to the given region.

2. Structure of Rational Matrices in 3 C C.

Let & C C be symmetrically located w.r.t. the
real axis R. Let {(s) € R(s) be written as
1(s) = tn(s)i(s) (2.1)
where tq(s) = nn(s)/da(s) and ng(s), da(s) € Ris)
are coprime with all their zeres within 2 and i(s) =
A(s)/d(s) and A(s),d(s) € Rls] are coprime with all
their zeros outside Q. Let 8 : R(s) — ZU{—oo} as
degnq(s) — degdn(s) tn #0
ba(i(s)) = { (2.2)
— 00 in = 0
then én(-) is a discrete valuation on R(s). The
zeros of np(s) (resp. da(s)) are termed the zeros
(resp.poles) of 1(s) in 2. Let Rp(s) be the ring of
rational functions with no peles in 2. These will be
called Q -polynomials (Pernebo, 1981).
Lemma 1. Let t;(s), t2(s) € R(s), t2(s) # 0 and
ba(t1(s)) > én(ta(s)). Then 3 4(s) € Rals), r(s) €
R.(s) such that:
(s) = ta(s)ils) + r(s) (23)
where dn(r(s)) < én(t2(s)) or r(s) = 0. ]
For t(s)(s 0) € Rn(s), da(t(s)) > 0, and so 8n(1)
serves as a degree on Ra(s). Thus by Lemma 1

Rq(s) is a Euclidean ring and hence a principal ideal
domain. ) )

T(s) € R(s)P*™ is said to be Q-polynomial if

lim,_,,T(s) exists Vsp € Q. The set of such matrices
is denoted Rn(s)P*™. T(s) € Ra(s)P*P is said to be
Q- unimoduler in case 3 T'(s) € Rn(s)P*? such that:
T(s)T'(s) = I or equivalently iff lim,—,,T(s) = Ty,
¥sg € 2, with det|[Tp| # 0. Obvious row/column
operations correspond to pre/post-multiplication by
an appropriate Q-unimodular matrix.
Definition 1. Ti(s),Ta(s) € R(s)?*™ are said to
be Q -unimodular equivalent (0 — u.e.) in case 3 -
unimodular matrices Uz (s) € Ra(s)®*? and Ur(s) €
Ra(s)™*™, such that:

UL(s)Ti (s)Ug(s) = Ta(s) (2.4) o

Theorem 1. T(s) € R{s)P*™ is ({2 — u.e.) to
(Verghese, 1978; Vardulakis, 1991)
€1 €r -
—_ ..., —,0 2.5
1I"l "I’r :I ( )
where ¢;(s),vi(s) € Rls] are monic, have
no zeros outside §2, are pairwise coprime and
ei(s)\eigr1(8), ig1(s)\hi(s) foreachi=1,2,..,r—1.
S.ﬁ.?(,)(s) is the Smith-McMillan form of T(s) in (2
and r is the rank of T(s). In (2.5) and the sequel
0 denotes a zero matrix of the obvious appropriate
dimensions. u]
€(s)/i(s) = fi(s), called the Q-invarani
rational functions of T'(s), constitute a complete
set of invariants for (2 — u.e.) of rational matrices.
Further the zeros (resp.poles) in 2 of T'(s) are the
zeros of €;(s) (resp. ¥;(s)), i € R.
Definition 2. A(s) € Ra(s)?*? and B(s) €
Rq(s)”>™ are said to be Q-left coprime iff
rankg[A(sg) B(so)l =p Vso €0 (2.6)
For 2 C C the following hold
Proposition 1. Let Ti(s) € Ra{s)**, Ta(s) €
Ran(s)?*", £+t := m > p=rank[T)(s) To(s)]. Then
the following statements are eguivalent:
(1) Ti(s) and T%(s) are Q-left coprime.
(2) T(s)=[Ti(s) T>(s)] has no zeros in Q.
(3) 3 X(s) € Rn(s)*P, Y{s) € Ra(s)'*P s.t.
T()X(s) + Ta(s)Y (s) = I (2.7) O

5%(s) = blockdiag [




Lemma 2. Let T(s) € R(s)?*™ be of rank r.
Then 3 (non unique) {-left coprime matrices A;{s) €
Rq(s)P*P, Bi(s) € Ral(s)P*™ such that
T(s) = A7 '(s)Bu(s) (2.8)

Every other 2-left coprime factorization A7*(s)B,(s)
1s such that:

Ai(s) = UL(s)Au(s) 5 Buls) = Ur(s)Bi(s) (29)
where Uz(s) € Ra(5)”*% is Q-unimodular. ]

(2.8) 15 called a Q-left coprime mairiz fraction
description (0 — MFD) of T(s). Wecallapxm Q-
polynomial matrix such as B(5) a numerator of T'(s)
and a p x p Q-polynomial matrix such as 4,(s) a
denominator of T(s). In the usual way we have

zeres in §2 of T(s) = zeros in 2 of B;(s)(2.10)
poles in Q of T(s) = zeros in 0 of A,(s)(2.11)

Definition 3. Let A(s) € R(s)?*™ and B(s) €
R(s)*** and consider the left Q-coprime MFD

[A(s) B(s)] = Dy '(s)[A(s) B(s)] (2.12)
A(s), B(s) are Q-left coprime iff the Q-polynomial
matrices A(s), B(s) are Q-left coprime. a

Similar definitions to those above may be given in

respect of (3-right coprimeness.
Definition 4. If 2 C CU{co} then the Q-least order
of T(s), denoted vq(T(s)), is the number of poles of
T(s) occurring in 2 counted according to degree and
multiplicity. )
3. Equivalence of Matrices in 2 C C U {oo}.

It is of interest to know if 3 transformations which
preserve, in a given region, the zero structure of
rational matrices with different dimensions. Initially
we cecnsider merely the case 8 C C since there
are some technical problems in treating the point
at infinity and C together (Pernebo, 1981). In
case we wish to consider @ C C U {co} a bilinear
transformaion may be employed to reduce the
problem to © € C. Let P(p,m) and FPn(p,m) be
respectively the sets of (r + p) x (r + m) of rational
and {2-polynomial matrices, where the integer r >
max(—p, —m).

Definition 5. Py(s), Py(s) € P(p, m) are said to be
2-equivalent in case 3 rational matrices M(s), N(s)
such that

Py(s)
(M(s) Po(s)) =0 3.1
—N{(s)

where the elements of the compound matrices
(M(s) Pa(s)); (Pi(8)T = N(s)T)T (3.2)
are Q-left and Q-right coprime respectively and
sayisfy the following (3-least order conditions
va(M(s) Pa(s)) = va(Pa(s))
0 (3.3)
va(Pi(s)T = N(s)T)T = va(Pi(s))
The importance of {2-equivalence is seen in

Theorem 2. f-equivalence on P(p,m) preserves
the gero structure in Q.

Proof. Let Pi(s), Px(s) € P(p,m) and let
[M(s) Pa(s)] = D' (s)[M(s) Pals)]

AO_[AG] L @9
—N(s) -N(s) !
be Q-coprime MFDs. Then
Sa(Da) = enlM P B oqr) (33)
which means that the Q-MFD
Py(s) = D3 (s)Pa(s) (3.6)

is -left coprime and so the zero structure in { and
the rank defect of Pa(s) and Pa(s) coincide. Similarly
the zero structure in  and the rank defect of P(s)
and Fy(s) coincide. Thus from (3.1} and (3.4)
Py(s)

- =0 (3.7)
—-N(s)
where [M(s) P(s)] and [P(s)T — N(s)T]T have full
rank ¥sg € Q. From (2.7) it follows that 3 §-
polynomial matrices A;(s), Az(s), Bi(s), B2(s) such
that

[M(s)  Pa(s)]

M(s)Ay(s) + Pa(s)Bi(s) = I (3.8)
A2 (SIN(s) + Ba(s) Pi(s) = Iy (3.9)
From (3.7), (3.8) and (3.9) we obtain
B M][B —;\”r} I o]
= (3.10)
—As B3 A P 0 I

where
Az = (A2By — B2A1) Py — A,
i (3.11)
and Bz = (.AgBl - B;},Al)ﬁ/[ + B,

From (3.10) the two -polynomial matrices on the
left hand side are Q-unimodular. Thus

By —-N P M Iy O
- = (3.12)
Ay P —43 B; 0 I

and it follows immediately that

B ~-N)[BA o Iy ~N
. = , (3.13)
4 B ||-4; L 0 B
Thus
L 0 I
_ _ (3.14)
0 Pg(s) 0 P}_(S)

are Q-u.e. and so Py(s), Pa(s) or equivalently Py(s),
P2(s) have the same zero structure and rank defect
in €. g

{)-equivalence has the property of preserving the
zero structure in ©. The proof also indicates that
the {2-polynomial matrices D;(s) and Da(s) which
define the pole structure in Q of Pi(s), Pa(s) may

be cancelled. Thus the pole structure in £ is not
invariant under {}-equivalence.

Example 1. Let Pi(s) = *2 and Py(s) = s + 1.
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With = C consider the transformation:

s+1
(642 s+1)(’“)=a (3.15)
(3.15) is an Q-equivalence transformation and so
Py (s), Pa(s) have the same zero structure in C. Note
however that P(s) has one pale at 5 = —2 while
P;{s) has no poles in C. a
Theorem 3. If P.(s), P(s} € P(p,m) have the
same zero structure in £ and the same rank defect
then they are {2-equivalent.

Proof. Let %, 53, be the Smith-McMillan
forms in Q of Py(s), P2(s). Then 3 Q-unimodular
matrices Uy (s), Ua(s), Ua(s), Us(s) such that:

Ui () PL(s)Ua(s) = 53,4

a(s)  &(s) (3.16a)
Bis) ms)’”]

Ua(s)Pa(s)Us(s) = 55.32(,)(3)

= blockdiag l:

1
Vo (s)

1
= blockdiag {7 o

5:.(3) (3.165)

als) el 0}
ve(s) eyeoa(s)

where 5%, ), S5, ¢,y have the same zero structure and
rank defect.

2] 0 ~
0% Shue) = Shio) ar (3.17)

¥ = (0, diaglghe(s), - Prar—1(s))
¥ = (0, diagf1{s), ..., ¥ (s)])
is an {-equivalence transformation since the

compound matrices (3.2) arising from (3.17) satisfy
all the conditions of Definition 5. From (3.17}

[U;‘(s) { L ”] Ua(s)} Py(s)
017
= Py(s) I:Ug(s) iP] Uri(s)
0\

(3.18) is still an Q-equivalence transformation since
multiplication by Q-unimodular matrices does not
alter the conditions on (3.17). n]

From Theorems 2 and 3 we see that Q-equivalence
is a necessary and sufficient condition for twarational
matrices to have the same zero structure and rank
defect in 2. Also note from Theorem 3 that

Corollary 1 The transforming matrices under Q-
equivalence may be taken to be (}-polynomial. 8]

Theorem 4. (l-equivalence 1s an equivalence
relation on P(p, m).
Proof.

(i) Refleziviiy property. Clearly
I.P(s) = P(s).I (3.19,
is an {l-equivalence transformation.

(i1} Symmeiry property. Let Pi(s), Pa(s) € P{p, m)
be {l-equivalent

ie. M(s)P.(s) = Pa(s)N(s) (3.20)
Then Pi(s), Pals) will have the same zero
structure and rank defect in @ by Theorem
2. Thus 3 a transformation of the form (3.18)
between Pa(s) and Pi(s}), which proves the
symmetry property.
Transitivity property. Let Pi(s), Pafs) €
P(p,m) and Pa(s), P3(s) € P(p,m) be Q-
equivalent respectively. Then P,(s), P(s) and
Py(s), Pa(s) have the same zero structure and
rank defect in Q. Thus Py(s), Pa(s) have the
same zero structure and rank defect in Q and so
by Theorem 3, Pi(s), Pa(s) are Q-equivalent. O

(i

Ry

Example 2 In the special case } = C and Py(s),
Pa(s) are polynomial matrices then Q-equivalence
coincides with (e.u.e.), (Pugh & Shelton, 10773,
This is because the {2-least order conditions requure
the transforming matrices to be polynomial, while
the conditions that the compound matrices of (3.2)
possess no zeros in ) reduce to the usual relative
primeness conditions of (e.u.e.). o

Example 3 In special case that } = sq where 55 €
C, and Pi(s), Pa(s) are polynomial matrices then
Q-equivalence reduces to local equivalence (Cullen,
1987). If @ = {oc}, then from Corollary 1 the
transforming matrices of {2-equivalence may be taken
to be proper rational matrices. If in addition
Pi(s), Pa(s) are polynomial then the (Q-least order
conditions are redundant and (-equivalence reduces
immediately to bicausal equivalence (Vardulakis,
1991) if P;(s), P2(s) are of the same dimensions, and
to (e.c.e.) (Walker, 1988) otherwise. a

“An interesting question still remains as to what
transformations will preserve the zeroc structure of a
rational matrix P(s) in the region @ = CU{{
The following result shows that Q-equivalence of
Definition 5 with 2 = C U {co} under the same
conditions still provides an answer.

Theorem 5. If Pi(s), P2(s) € P(p,m) are CU{c0}-
equivalent then they have the same finite and infinite
zero structure.

Proof. Let .A denote the set of all locations of poles
and zeros of Pi(s), Pz(s) in C U {cc}. Since Pi{s),
P5(s) are rational matrices over R it follows that 4 is
finite and symmetric w.r.t. the real axis, and hence
that A C CU{co}. Thus 3 a real number o ¢ 4. In
particular P;(s), Pa(s) are CU {oo}\ {a}-equivalent
since they are CU{co}-equivalent. Thus by Theorem
2 Pi(s), Pa(s) have identical zero structure in CU
{ec} \ {a}. By definition of o Pi(5), P2(s) have no
zeros at @ which completes the proof. 0
Corollary 2 In the case that Pi(s), P(s) are
polynomial matrices, then C U {co}-equivalence



coincides with (f.e.) (Hayton et.al. 1988).

‘Proof. Note that if Py(s), Py(s) are polynomial
then the C U {co} conditions (3.3) imply that
the transforming matrices can have no finite poles
and are therefore polynomial. These particular
conditions then reduce immediately to the McMillan
degree conditions of (f.e.). The other conditions of
C U {oo}-equivalence coincide directly with those of
(f.e.), as required. a
Example 4. Let G{s) € R(s)"*™ be the transfer
function matrix of an open-loop system and let
Gr(s) be the transfer function matrix of the closed
loop system under constant cutput feedback of the
form u(t) = —Fy(t) + v(t)

—V@—%%EL@—»_*—» ()
]

Diagram 1
It is well known that the finite and infinite zero
structure of G(s) and Gr(s) is the same, but what
is interesting here is the explanation which can be
given for this by the notion of Q-equivalence. Recall
that the transfer function matrix of the closed loop
system is

Gr(s) = G(s)(I + FG(s))™" = (I + G(s)F) 1 G(s)

(3.21)
Consider therefore the transformation
I G(s)=Gr(s) (I+FG(s) (3.22)
and the compound matrices
G(s)
I Gr(s) (_I B FG(S)) (3.23)

We will show that (3.22) is a C U {co}-equivalence
transformation. Consider therefore the left coprime
MFD

Gp(s) = DFY(s)Np(s) (3.24)

Then
(I Gr(9))=Dg'(s)[Dr(s) Np(s)]  (3.25)
is clearly a left coprime MFD. Thus the finite
zero structure of (I Gp(s)] coincides with that of
[Dr(s) Np(s)] and so it has no finite zeros. In a
similar way [I Gp(l/w)] can be seen to have no

zeros at w = 0 and so [ Gg{s)] has no infinite
zeros. Obviously

ycu{uu}(‘r GF(S)) = ch{m}(GF(s)) (326)
Thus {I Gr(s)] satisfies the conditions of CU {co}-
equivalence. For the other compound matrix in

(3.23) note that

Gs)] _[1 o G(s)
[*{}—lf‘ I |-1=FG(s)

(3.97)

is a strict equivalence transformation which preserves
the pole and zero structure in C U {co}. Thus
the second compound matrix in (3.23) satisfies the
conditions of C U {eo}-equivalence, since [G(s)T -
17 satisfies these conditions. Therefore (3.22) is a
transformation of C U {co}-equivalence and so G(s)
and Gr(s) have the same finite and infinite zero
structure. u}

4. Conclusions. .
A transformation, called (3-equivalence, between
rational matrices of different dimensions has been
defined. It is shown that Q-equivalence preserves
the zero structure of the given matrices, within the
region {! C C U {co}, and definres an equivalence
relation on the set P(p,m) in case where Q C
C U {co}. It is observed that Q-equivalence is an
generalisation of many known transformations, for
example (e.n.e.), (e.c.e.), local equivalence and (f.e.).
The notion of Q-equivalence provides an interesting
explanation of the well known invariance of the finite
and infinite zero structure of a given rational transfer
function matrix under constant output feedback.
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