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Abstract

W lovich's classical definition of cquivalence for lincar systerus is
iended to the generalised study of lincar systems. It is shown
8¢ this new kind of equivalence is an alternative characteri-
ation of a notion of equivalence for general dynamical systems
be.r which two other characterisations have recently been given

sgywords : Linear systems. cquivalence.

] Introduction
The conventional theory of lincar systems deals with the fi-
frequency {cxponential and sinusoidal) behaviour of such
Ugvstems. In this theory the transformation of Strict System
:qu'valence {Rosenbrock 1970) plays a central role. This trans-
'\ formation does indeed possess the property of preserving the
finite frequency structure of any polynomial matrix description
{40 which it is applied. Another notion of “equivalence’ be-
[ fween general dynamical systems was subsequently proposed
I by Wolovich (1974) and was based on the intuitive idea that
. two general linear systems should be deemed equivalent in case
y state space reductions of them are related by the usual
i change of basis in the state space or in system matrix terms,
system similarity (Rosenbrock, 1970). This notion of equiva-
implicd a number of desirable invariants and reduces to
£ the standard definition of system similarity when both systems
. are in state space form. Pernebo {1977} has shown thar strict
system equivalence in Rosenbrock’s sense is equivalent to the
! ‘existence of a certain bijective mapping between the sets of so-
‘utions to the differential equations describing the system. A
. consequence of this proposition was that Wolovich’s definirion
and strict system cquivalence are scen as identical notions ot
% equivalence.
The generalised theory of lincar systems secks a more complete
E study of linear systern behaviour by considering additionally the
4@ possible significant impulsive motion. This necessitates treat-
5 ing the system’s infinite frequency behaviour on an equal basis
to its finite frequency behaviour and in this respect the above
£ transformations do not permit the type of integrated study re-
© quired since it is well known that they do not preserve the in-
finite frequency properties of the systemn,  Within this spirit
of an integrated study Hayton ct.al. (1986} and Pugh ot al
(1987) proposed the transformation of Complete System Equiv-
ce for generalised state space systems, while Hayton et al.
“990) have proposed the transformation of Full System Equiv-
alence for general systems described by mixed linear algebraic
md high order differential equations. Recently a characterisa-
tion of full system equivalence has been given by Pugh et al.
"992) in the manner of Perneho (1977) where the existence of
“‘Uertain bijective mapping between the sets of finite and infi-
Mile solutions of the underlying differential equations is seen to
Specify the equivalence. These transformations do indeed have
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the property of simultaneously preserving the finite and infinite
frequency structure of systems to which they are applied.

In this paper the view of Wolovich (1974) will be adopted and a
notion of “equivalence” between two general system descriptions
will be attributed on the basis of the equivalence of their under-
lving generalised state space models. This represents a naturil
extension of the Wolovich ideas since generalized state space
systems are the most simple form of system equations which
simultaneously exhibit finite and infinite frequency behaviour.,
It will be seen that this notion of equivalence again implies a
number of desirable invariants and reduces to complete system
equivalence when both systems are in generalized state space
form. It will be seen that this new kind of equivalence is iden-
tical to full system equivalence and so preserves the system's
finite and infinite frequency structure.

II Preliminary Results
Consider a linear time invariant multivariable system ¥ de-
scribed by a polynomial matrix description (PMD) :

A(p)3(t) = B(p)u(t)

yit) = C(p)8(t) + Dipult) (1b)
where p = d jdt,A(p) € Rlp) ™ with [{p]| # 0, B(p} €
Ripl™™, C(p) € R[p|P*".D(p) € Rip™™. 3t} : {0— ) —
R™ the pseudo state of T, uft) : (0-, o] — R™ the controt
input and y(t) the output of T, and let

(la)

A f Als) Bis)| _ o0 [r4pixir+m) 0
Pls) = [—(}'[s} Disy| = Ris| (2
be its Rosenbrock svstem matrix, T may be written
f Alpy DBlpy 0O () ro
—Clp) Dlp) L| | -uir| =]0|uty (B
0 —f,, 011 yit) Ll
roan
A
gty =10 0 I, { ---u'.‘t“_l‘l (3
uit)
which is called the normalized form of ¥ and denoted 4V
Als) Bs) 0 \ 0
~C(s) D(s] i, 0 T(s) U
P(s) = =
0 —Im 0 I -V 0
0 0 -1, | ©
' (4)

is then (Verghese 1978) the normalized form of P(s).
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Consider the set P(p, m) of (r+p) x (r+m) polynomial matrices
vhere the integer v > max{—p, —m}.

Definition 1. (Hayton et.al. 1988)

Two matrices Ty(s), To(s) € P(p,m) are said to be fully equir-
alent (f.e.) in case there exist polynomial matrices M(s), N(s)
»f appropriate dimensions such that :

(M) Ty(9) { hits) } 0 (%)
—;\"(.S')
vhere the compound matrices
Tiis)
Lis) 2 [M(s) Ty(s)): R(s) 2 {65)
—N(s)
atisfy
i1 they have full normal rank, (Ta)
it} they have no finite nor infinite zeros. (Th)

ii1) the following McMillan degree conditions hold
(Lis)) = dnm(Tals)) ; dar (R(s)) = o (T1(s)) (Te) O

st Py(p,m) be the set of (r + p) x (r+ m) Rosenbrock svstem
natrices then the following extension of definition 1 to the set
“(p,m} can be made.

Jefinition 2. (Hayton et.al. 1990)

et Pi(s), Pa(s) € Po(p,m) be representations of the general
lynamical systems £ and Xy respeetively. Py (s) and Pa(s) are
aid to be full system equivalent (f.s.e.) if there exist polynomial
natrices M (s), N{s) , X(s),Y(s) such that

Mis) 0 Ai(s)  Bils)
X(s) [ [_Cl(-‘f) Di(s)
_ { A2(s)  Ba(s) [N(S) Y(s) -
~Ca(s) Da(s) 0 I
vhere (8) 1s a (f.e.} transformation. a

t was shown in Hayton et al. (1990) that an analogous defi-
ition relating to the normalized forms of the system matrices
~ads to an identical notion of equivalence in the sense that two
losert=nck system matrices are (fs.e.) if and only if the cor-
ospe . normalized form systern matrices are so related. In
whdition it can be shown that any Rosenbrock system martrix 1s
f.s.0.) with its normalized form. For case of presentation this
cetion will concentrate on Rosenbrock system matrices, bat it
hould be borne in mind (for the sequel) that the following deti-
iitions and results apply equally to the normalized forms of the
wwstem matrices. It s also important to note in the :i(:(lucl thar
{s.e.} defines an equivalence relation on Fy(p, m).

n the case of definition 2 where M{s), N(s), X (s), ¥'{s) are con-
tant matrices and £y, Ty are in genceralized state space form,
hen £ and £y are termed completely system equivalent (c.s.c.).
An interpretation of (¢.s.c.) in terms of bijective maps between
he “finite” and “infinite” solution spaces of the two generalized
itate space systems was given by Hayton et.al. (1986) through
‘he notion of fundamental equivalence. An extension of this
nterpretation to the general case of (f.s.e) and dynamical sys-
-ems of the form (1) has been proposed by Pugh et.al. (1992).
specifically

Definition 3. (Pugh et.al. 1992)

Let ¥y, T2 be two systems of the form (1) with respective sohu-
sion spaces X}, X2 for a given fixed u(t). T, Iz are said to be
‘undamentally equivalent if and only if the following hold

i) 3 a bijective mapping between X1, 12

270N

Ba(t)\ [ Llp) T(p)\ (5i(t)
u(t) 0 I u(t)
where J;(t) denotes the pseudostate of I, (i=1,2).

(ii) Z; and X9 have the same output.

The definition of fundamental equivalence for general dvnamiea]”
systemns coincides with the corresponding definition when th,
systems are in generalived stare space form (Havton ct.al, 1986)
where the only difference then is that in (9). Lp) and T(p) are
constant matrices. Why the map (9) should be constant in thig”
case will be addressed 1o the sequel. y
The formal conncetion between (fs.¢.) {definition 2) and fup-
damental equivalence {definition 3) is established by

Theorem 1. 4

Let ¥, and £; be two general dynamical systems (gem’.raﬁ:f.cd}
state space systems). Ty and Ty arc fully system equivalent
{(completely system cquivalent) if and only if they are funda: |
mentally equivalent. Further if the (fs.c.) transformation which
relates the two systerns is of the form (8), then rhe mapping .

(32(?}) [Nl Y(P)) 3 (t)
ulty ) ( 0 i ( uit) )
which is construeted from the right transforming matrix in (8),
13 a bijective mapping. 2
Proof. See Pugh et al. (1992). 0
The following is noted in Pugh et al.(1992) is

Corollary 1.

(10)

The absence of finite zeros in the compound matrix

'g?)) BEP;
—Clp) Dip
Nip) Yip) (1)
0 I

15 a neeessary and sufficient condition for the part of the inverse
of {10) relating to the finite parts of the solntions of T,y to
be uniquely determined. The absence of infinite zeros in (11)
together with the MeMillan degree condition

Alp) Bip) ;
—Clp) Dip) | _, o Aipi o Bip) )
om Ny Ym | —M ("("E;J] Dip) (12 %
0 I

1 a4 necessary and sufficient condition for thar part of (10) relat-
ing the impulsive parts of the solutions ot £1. 25 to be uniguely
determined. o

Important propertics of the two identical transtormarions pro- %
posed in definitions 2 and 3, are the following :

Lemma 1. (Hayton et.al. 1990, Karampetakis and Vardulakis
1992)

Under full system equivalence the following are invariant

(i}  the generalized order f and the Rosenbrock degree dg,

(i) the transfer function and hence the sets of finite and infi-
nite transmission poles and zeros,

(ili) the sets of finite and infinite system poles and zeros,

{(iv) the sets of finite and infinite input (output, input-output)
decoupling zeros,

(v) the sets of input (output) dynamical indices. u]
For the precise definitions of the terms used in Lemma 1 the




reader is referred to Rosenbrock (1970) and Verghese (1978).
\We present next an extension of the well known Wolovich def-
nition of equivalence {Wolovich 1974). This extension relates
ro the complete solution space of the system (1), not simply its
4pite solution spacc, and its connection with the ideas noted in
his section will be established.

11 An Extension of the Wolovich Definition Of
Equivalence

The notion of normalised form of the system equations, or what
s the same thing. the associated system matrix permits consis-
rent definitions of finite and infinite frequency system propert ies

10 be given (Verghese 1978). In that sonse it therefore facilitates -

the integrated study of the finire frequency and impulsive be-
naviours of the systern. The inirial definitions given here there-
fore relate to normalized forms.

Consider the normalized form TV of the general dynamical sys-
tem & of (1) L.

T(p)&lt) = Hult) (13a)
ult) = VE(?) (13b)
where
Alp) Blpy 0 0
Tip) = | -Cip) Dlp) ~Im | U=10
0 L, 0 I, (14)
Voo 0 Lt =307, —u® ue "
Consider the generalized state space system
Ei(t) = Az(t) + Bu(t) (15a)
y(t) = Cx(t) + Dult) (15b)

Following Wolovich (1974) the cquivalence of two general dy-
namical systems will be defined in two parts. The first step is
to establish the notion of the equivalence of T to a generalized
state space form, while the second step will involve the notion
of equivalence of twa such gencralized state space forms. With
regard to the first step the following is proposed.

r ition 4.

The systems (1) and (15) are “equivalent” if and only if the
two following conditions hold

(i) there is a constamnt bijective mapping

€] [CU th rm .
_ (16)
u(t]J Lo I J u(t)

between the set of solutions . J, X, of the normalized form
(13) and the pencralized state space system (15), for cach

wlt).
(i) the systems (13) and (15) have the same output for the
given u(t) [}

Note that the equivalence is defined in terms of &V the normal-
ized form of T, and not dircetly in terms of ¥ itself. Inscrting
(16) in (13b) we obtain that

y(t) = V(Cox(t) + Doult))
— VCyz(t) + VDou(t) (17)

= Cz(t) + Du(t)

The condition (i) of the definition 4 means that C = VCq and
D = VD, which indicates, on taking into account condition (i},
that the following diagram commutes

¢

Y

"

Diagram 1 Y., is the set of outputs corresponding to u.

The above is a natural extension of the Wolavich definition of
equivalence to the generalized state space setting. Notice that in
the Definition 4, as in the original Wolovich definition, the map
(16) is taken to be constant without any sceming justification.
An explanation however can be given, of why this map should
be constant. A necessary tool for proving this is the following
Lemma 2. {Pugh ct.al. 1092)

Consider the general dynamical system (1) and the relation

()0 ) ) e

A necessary and sufficient condition for relation (18) to be a
map in the formal sense {of being a many-one relation) is

Alp) Blp)
-C(p) Dip) | _ Alp)  B(p)
Su NGl Y “”"(—cw) D(p}) (19) 0

Based on Lemma 4 we can now prove the following
Theorem 2.
Consider the two dynamical systems (13) and (15). Let

e)\ _ (N Y)Y (=)

(u(t) =70 1) \u® (20)
be a relation between the solution-input spaces ROMETURE
of (13) and ()T u(t) )T of (15}, where N(p) = Ngp?+...+
Nip+ Npand Y(p) = Yo'+ ...t het Yy (where at least one
of Ng, Yq is nonzero}. Then (20) is a map if and only if it is
constant.

Proof.

By Lemma 2 a necessary and sufficient condition for (20} to be
a map 18

pE-A B
-C 0 . pE-A D 'L'__’;
ol N Yip | =M ( _C u)
0 I
E o0 0 0
0 .0 0 0
hrq e 0 Yq 0 E 0
rankp Ny 0 Yoo = rankp 0 0
N 1 e J\‘r,I Yl| FP Yq
- N.=0, ; Yi=0 1 =2,....9
a.nd N1 =HE Y] =0 {21)

for some constant matrix H. Thus

(&)= 1 ()-
(Nn + H(Az(t) + Bu(t)) + You(t) )
u(t)

_ (No 4(-) HA Yo +IHB ) (zgg ) (22)
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and so the thorem is proved. m}

Theorem 2 confirms our intuition that the physical system vari-
ables £(¢) are constant linear combinations of the generalised
state variables z(t). It also justifies why the definition of funda-
mental equivalence for generalised state space systems (Hayton
et al. 1986) should be based on constant maps as follows.
Corollary 2.
The definition 3 of fundamental cquivalence for general dynam-
ical systems coincides with the definition of fundarmnental cquiv-
alenee for generalized state space systems (Hayton ct.al. 1986),
when (1) is in generalized state-space form.
Proof.
If there exists a bijeetive map of the form (20) between two
generalized state space systems then according to Theorem 2
this map is a constant map which verifics the corollary. C
(16) is an interesting map. The reason for this is that the solu-
tion sets of A} and Xj of the homogencons systems (13a) and
(15a) form vector spaces with dimension cqual to the generalized
‘er fi = dn(T(s)) and f = ép(pE — A) (Vardulakis 1991)
respeetively. (16} is then a vector space isomorphism between
¢ and Xy, and so in particular it will preserve this generalized
order i.e. du(T(s)) = bp(pE — A). The bijective map (16) has
also the property of preserving the controllability subspaces of
since it is a bijection between the solution/input pairs of these
systems. Less obviously (16) also preserves the observability
subspaces of these systems (13) and (15) (Pugh et.al. 1992).
It is then reasonable to call (13) and (15) ‘equivalent”. Some
additional properties which arise from the above definition and
provide points of comparison with Wolovich (1974), are included
in the following results. The first of these establishes invariants
of an external nature.

Theorem 3.

The “equivalent” systems (1) and (15) are

(i)  Partial state/input transfer matrix cquivalent,
(ii) Input/output transfer matrix equivalent
Proof.

{i) Laplace transforming (13a) and (15a) and ignoring the ini-
*" ! conditions gives

T(s)E(s) = Uii(s)
(sE — A)ils) = Bas)
Thus from condition (1) of definition 4 it follows that
&(s) = Cod(s) + Dyils) = Co(sE — A)7 ' Bia(s) + Dyi(s)
but
&(s) = T_](,s-)(,f'ﬁ{s}
and so necessarily
ColsE-A)'B+ D, = TV (23)
{11} From (13)
9ls) = V()T " HslU(s)als)
while from (15)
4(s) = (C(sE — A)~'B + Dyi(s)
By condition (ii) of Definition 4 these outputs are the same for
any given input @(t) and so necessarily
CsE-A)™'B+ D =vT-Y (54
g (24
(= C(s)A™ (5)B(s) + D(s))
O

2392

From an internal point of view we have the following
from the definition 4. T

Theorem 4. .

(i}  Definition 4 reduces to the definition of complete Syst
equivalence when the gencral dynamical systen (1) whi
undcrlies (13) is in generalized state space form. :

(i} the generalised state space system formed from(15a) a
(16) i.c. f

Ei(t) = Az(t) + Bu(t) (258) &

&(t) = Cox(t) + Dyu(t) (25b).
is strongly observable ic. {({pE - AT ¢ has no finite’
nor infinite zeros. utt

Proof. o

4
{1} Consider the case where (1} is in gencralized state spacél
forma.e. Alp) = Evp— Ay, Blp) = By, Clp) = C, and D(p) =
Dy and so (11) is also in generalized state space form o

Ex(t) = Ax(ty + Bu(t) (26a)
u(t) = Cxit) (26b)
5
where
E, 0 0 A =B 0
E:[” 0 0l.4d=|¢c, -p, -1 ,
0 0 0 0 I 0

0
B=10(,C=100 o ITand x(¢) = lz(t)", —u(t)T, y(&)7)T
I

27)
If the two generalized state space systems (26) and (15)( are .
“equivalent” in the sense of definition 4 then the two systems
are fundamentally equivalent under a constant map and so by }
Theorem 1. (26) and (15) are (c.s.c.). Additionally note that

8] ()

Lolr]

[ o
0o | 3B By
| Il -o ]

(28)

| -

[ 1 0 |

C[sE- A BJ 0 ‘ 0l

L -C o ¢ o, ‘

L0 I
is a transformation of complete system cquivalenee, and so from
the transivity property of {ese), the two generalized state

space systems (1) and (15) will be (c.s.e.).

(it} The mapping (16) is a bijective mapping, and so the Tener-
alized state space system (25) is str mgly obscrvable, (Verghese
1978). 0
To complete the definition of equivalence in the Wolovich man-
ner it is necessary for cvery general dynamical system in nor-
malized form to possess an equivalent {in the sense of definition
4) generalized state Space representation. It is always possible
to construct an “equivalent” generalized state space systermn as
can be seen in the following

Theorem 5.

Every general dynamical system of the form (1) has an equiva-
lent (in the sense of definition 4) generalized state-space system
representation.




- (1978) proposed a reduction method which takes a
irreducible realization {Cm,Jm,Bm} of the denomi-
atrix of the normalized system matrix {4) such that

T(s) = Coollp — 3Joo) " Boo (29)

¢ the gencralized statc-space system

e -Be 0 2(t) 0
Coo 0 |u ) | =] o | (30)
0 Vo0 —u(t) ()

Al show that this gencralized state-space model is an
nt model of the general dynamical system (1). In this
note that from (30)

RE) z(t)
gry=10 1 k l =0y l } (31)
£(t) &(t)

\pping butween The solution sets of the normalized system
wnd the generalized state-space system (30). However the
und matrix

T-A I,—-ple —B g T, —pd
— I (_".‘,: =0 Ow F.E I 20 (32)
Cy - Cw

( i

es the McMillan degree condition in (12), has no finite nor
¢ zeros because the realization {Cos, Joc, Beo} I8 strongly
«cible and so the mapping (31) is an injective mapping.
\n see also from the form of Co that the mapping (31) is
v a surjective mapping. Hence (31) is a bijection and so the
alized state space model {30) satisfies the first condition
» definition 4 of equivalence. We have also that

(a1 2(t) i ; {z(ﬂ]
§ = VE(t) = VG —0 v (33)
ylt) = V&) ) L(”l i ] €(t)

i is the output from the peneralized state space represen-
nin (30). Thus the seeond condition of the equivalence in
tition 4 is also fulfilled and so the theorem is proved. o
defit 4 of cquivalence given in Definition 4 is a special
of the definition of fundamental cquivalence of Definition
d as snch will possess, by Theorem 1. a formulation as an
o1 transfurmation. In fact 10 is an alternative characteriza-
of (fs.0.) in the context of general dvnamical systemns (1)
seneralised state-space systerns of the form (15).
eorem 6.
- general dynamical system (1) and the generalized state-
ce system (10) are cquivalent in the sense of definition 4 if
[ only if they arc (fs.c.).
nof
} Suppusc (1) and (15) are (fs.c.). It has already been
ed that any system ¥ is (fse) to its normalised form
V) and so from the transitivity of (fse} it follows that
!} and (15) are {fs.e). Hence there exist polynomial matri-
- M(p), N(p), X(p), Y (p) such that

pE—-A B
Mig) 0| T(p) U ‘¢ D |-0 (3
X(p) Il -V v “N{p) -Y(p
0 -1
tere (34) is a (f.e.) transformation. According to the McMil-
n degree conditions on the compound polynomial matrices
(34) we obtain that Y{p) = Yo is a constant matrix and

N{p) = No+ HEp and so (34) may be rewritten as

[M(p) 0

pE—-A B
T(o) U ] ¢ p |_g
X(p) I

-V 0 —Nu— HED —Yu
0 -I

(35)
Postmultipling and premultipling respectively the first and the
second compound matrix in (35) with

I 0 00 I 000
0 I 00 . 0 I 0
Q= and Q7 = (36)
: -H 0 I 0 H oT OO
0 0o I o o oI
we obtain that
M{p)—T(p)H 0 T(p) U
X(py+VH I -V 1]
pE - ,‘1 B {37)
-C D
% =0
—-Npg— HA -Y,+ HB
0 -I

which gives according to Theorem 1 that

[g(t)} - [N.}+ HA Y5- HB] r(t)}
= (38)
u(t) 0 I u(t)

is a bijective mapping. (F.s.e.) has also the property to leave
invariant the transfer function matrix and so the two systems
will have the same output and so the systems (1) and (15) are
equivalent in the sense of definition 4.

(=) If the two systems {13) and (15) are equivalent in the sense
of definition 4 then it is obvious that they will be fundamental
equivalent according to definition 3. Hence according to The-
crem 1, they are (fs.c.). Again since any system is (fs.e.) to
its normalised form it follows from the transitivity property of
(fs.e.)} that {1} and (15) will be so related. O
Corollary 3.

The general dynamical system (1) and generalized state space
representation (30) are (fs.e)

Proof.

From Theorem 5 the general dynamical system (1) and the gen-
cralized state space system (40) are cquivalent in the sense of
definition 4, and so from Theoremn 6, they are (f.s.c)) 0
Theorem 7.

Two gencralized state space Systems are (f.s.c.) if they are
(c.s.e).

Proof.

(=) In case where the general dynarmical system (13) is in gen-
cralized state space form we obtain from Theorem 6 that if the
two generalized state-space systems are (f.s.e.) then there exist
a constant bijective mapping between the solution sets of the
two systems of the form

[rz(t}} _ [N Y] [11(t)] (39)
u(t) o I u(t)

and so the two generalized state space systems are fundamen-

e




tally equivalent or according Theorem 1 (c.s.e.).
(«) Tt is obvious that the conditions of (c.s.e.}) coincide with
the conditions of (f.s.c.) in the special form of (c.s.e.) and so
the converse of the theorem is proved. o
As proposed by Wolovich (1974), it follows in view of definition
4, and the previous results that it is now possible to complete
the definition of cquivalence by defining equivalence between
two general dynamical systems of the form (1). Whereas in
the original Wolovich definition the transformation of systemn
similarity (Roscnbrock 1970) plays a key role, in this study it
will be the transformation of (c.s.c.).
Definition 5.
Two general dynamical systems ¥y and Ep of the form (1) are
equivalent if and only if their equivalent gencralized state-
space systems are {c.s.c.). a
Under this definition, Theorem 6 may be extended to the case
where both systems arce in the general form (1) as follows.
Theorem 8.
T general dynamical systems Iy and £y are equivalent in the
s of definition 5 if and only if they are (f.s5.e.).
Proof
{ =) Consider two equivalent general dynamical systems ¥,
and X;. This means that their equivalent (in the sense of def-
inition 4) generalized state-space representations S) and S5; of
the form (30) are (c.s.e.). From Theorem 6 it follows that I,
and S) (resp. £y and S;) are (f.s.e.). Further since (c.s.e.) isa
special case of (f.s.e.) we have the following relation

Z] I'.i._‘e. 5,1 f.i;e. SQ f.‘i.‘e. 22 (40)
Using the transitivity property of (f.s.e.) we obtain that the
two systems X; and X are (fs.e.).

-(+= ) Consider two (f.s.c.) general dynamical system £; and £,
and let 5; and S; respectively be their equivalent (in the sense
of definition 4) generalised state-space systems. By Theorem 6
E) and S; (resp. £y and §3) are (£s.c.) and so

.50 f.s.e [se.

S~ E ~E~ S (41)

Thus by the transitivity property of (£s.c.), S| and S3 are (fs.c.)
or further by (Theorem 7) S| and S; are (cs.e.). Thus £,, &,
a uivalent in the sense of definition 5. m]

An nteresting property of this new kind of cquivalenee is
Corollary 4.

If two gencral dynamical systems £, and Ty are equivalent in
the sense of definition 5 then they have the same

(i)  generalized order f and Rosenbrock degree dy,

(ii) transfer function and so the sets of finite and infinite trans-
mission poles and zeros.

(iii} sets of finite and infinite system poles and zeros,

(iv) sets of finite and infinite input (output) decoupling zcros,
{v) sets of input (output) dynamical indices, .

Proof.

From Theorem 8 we have that this new kind of equivalence
defines the same equivalence classes as (f.s.e.) and so shares the
same properties (Lemina 1). a]

IV Conclusions

An extension of the Wolovich definition of equivalence, to
encompass the generalised theory of linear systems, has been
given. The extension is based on the notion that a general

dynamical systems has an equivalent generalised state space re-

duction. In fact several reductions are available but the oney
selected here is that proposed by Verghese (1978). The basis o
the definition is then that two general dynamical systems are
equivalent in case their generalised state space reductions are
completely system equivalent. Thus in the generalised study of
linear systems the generalised state space system is APPropri-
ately seen to play the same rolc as the state space model in the
conventional study, whilc complete system equivalence is seen
to be as important in the gencralised context as systermn similar-
ity in the conventional. Overall the definition is scen to coincide
with the previously dcefined transformation of full system equiv-
alence and so has the property of simultancously preserving the
the system’s finite and infinete frequency behaviour i, the
behaviour as summarized by the generalized order. the sets of
finite and infinite system zeros and poles, the transfer funetion
and the sets of finite and infinite decoupling zeros. As such the
proposed notion of equivalenee provides some neat explanations
of certain features of the transformation of full system equiva-
lence and underlines its important role in the generalised study
of linear systems
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