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Abstract.

This paper gives a physical interpretation of invariant
zeros and indices in terms of the general zero-output
behaviour of a linear dynamical system.

1. Introduction.
Consider a linear, time invariant, system described by

z: A(p)B(t) =B(p)u(t) w1)

y(t) = C(p) B(t) + D(p)u(t) '
where p:=d/dt is the differential operator,
A(p) I [p]™™ with det[A(p)] # 0., B(p) DO[p]™ ",

C(p) M [p]”™".D(p) M [p]™*™. B(t):(0-+o0) — O"
is the pseudostate of the system, u(t):(0—,+o) - O™
is the input of the system, and y(t):(0—,+o) - OF is

the output of the system. 2 may be rewritten as :
OAp) B(p)Wpe) D Dol

Hep) peTtund HBY

The general output-zero problem for 2 may be stated
[6] as follows : Find the set of initial conditions (or
pseudostates) and control inputs such that the output is
identically zero. Using the system description (1.2), this
problem is reduces to studying the structure and
properties of the vector space of solutions of the system

OA(p) B(p)mpBt) d_
He) pio)Hum™ Qmepxmem  (1-3)
P(p) (0

(1.2)

where
P(p) =Py + P+ +Py p

In the case where 2 is in state-space form the zero-
output problem has been studied by [4]-[7] and the
relevance of the finite and infinite invariant zeros of the
system was demonstrated. However questions still
remain concerning the solution of the general output-
zero problem when 2 is in the general form (1.1).
This question will be considered in this paper.
Specifically in sections 2 and 3 we give a geometric
interpretation of the finite and infinite invariant zeros,
while in section 4 we introduce the notions of left and
right invariant indices and give a geometric
interpretation of these indices. These interpretations
coincide exactly with those given for state-space

4 m [p](n+p)x(n+m) (14)
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systems by [5], [7]. In section 5 we give a general
solution to the zero-output problem.

2. Geometric Interpretation of the Finite
Invariant Zeros.

Consider the system 2 in (1.1). Define

IR0 ~15As) : 3
0 ut a0 O
£= EENS) B(s)HB(s) O B @12
c9 DOHiei o
Zu=-myZ and ZB: BZ (2.1b)
[a] ={a+ zwhere aisasolution of (1.3)
andzOZ ={gg 0 Z
[a]y ={a+zwhereaisasolution of (1.3)
andzOZ} = my{a 0 Z, (2.1c)

[a]B ={a+zwhereaisasolution of (1 3)

andzO ZB} = nB{a} O ZB
where L[z(t)] denotes the Laplace transform of the
veotor  Zt) .7z (B(H)T, (-u) ™)' 0Z - B(t) and
T, (B(t)T,(—U(t))T Yoz. —u(t). Note also that Z
is the solution space of the system (1.3) under zero,

input and pseudostate, initial conditions and that its
elements are represented by the equivalence class [0].

Assume that P(s) [ [g)(™P*("*M of (1.3) has
U (s)P(s)UR(s) = 2.2)

blockdiag (L .1, ()., Fr (9, O por pramer )
1<p<r asits Smith form (in C) where f;(s) [ [9]

are the nonunit invariant polynomials of P(s) and
fis)/ fi4(9., i =p,pu+1...,r -1 Assume that the

nonunit invariant polynomials f,(s) I [s] have L
distinct zeros Aq,A,,...,A, (where for simplicity of
notation we assume that Ai 0 ) with partial
multiplicities 01;,02,...,0¢; i =, U +1...,r where
0<0j,<0j u<<0;.



[8] originally defined the notion of the finite invariant
zeros for general systems of the form (1.1). Then [7]
utilised this definition for the solution of the zeroing
output problem in state space systems. An extension of
the definition of generalized invariant zero-direction
vectors for general systems of the form (1.1) is

Definition 1. Let P(s) be the Rosenbrock system
matrix of 2 defined in (1.3)-(1.4). Then the finite
invariant zeros of 2 are the finite zeros of P(s). if
associated with each invariant zero A;, i O¢ there is a

composite vector z'0 = @iOT ,—u(i)T)T which lies in the
kernel or null space of P(A;) ie. P(Ai)z(i) =0, and
such that P(s)z(i) #0, and a sequence of vectors
ziq: @AT,—uiqu, i0¢, q=212,...,v such that

P(A )z'0 =0

p(l)(Ai)Z(iJ+P(Ai)zi1:0 23

PG4+

(v 1)'
+POA)Z,_ +P(A)Z, =0
and . . .

P(S)(Z'O +(s=Aj)z++(s— A )"iv),t 0 (4
where P(j) (s) denotes the jth derivative of P(s), then
Z'O is called an invariant zero direction vector for A;
and Z';q,i 0¢4,9=0,1..,v a sequence of generalised

invariant zero direction vectors for Aj. a

The existence of sequences of generalized invariant
zero-direction vectors is given by the following

Theorem 1. Consider the Rosenbrock system matrix
(1.3) of > with Smith form (2.2). Then for any
invariant zero A;, i0¢ of partial multiplicity

g, J-,j =u,u+1 ...,r O an invariant zero-direction

i T 0 TY
vector Z0=\Gjo Yo and a sequence of

generalized invariant zero-direction vectors
zZ —%!T—U!TT ige j= +1,...,r
ia~ Fia "Yia A
q:lZ,...,ai’j -1

Proof. Let u;(s), with j=ppu+1...r be the
columns of Ug(s), defined in (2.2) and
ul?(9:=(d"/ ds™)uj (). qO(gy ;~1).. Then it is
casily seen that the vectors

Z.q= @fl A g——u(‘“()\ ) @3

with iO¢andj =y u+1...,r form a sequence of
generalized invariant zero-direction vectors.x

Theorem 2. Let P(s) be the Rosenbrock system matrix
of 2 defined in (1.4) and let A, i O¢ be an invariant

zero of 2. . Then to an input of the form
voaly o gv-a-k 0

[ug ®)lu: ZEtu— o oi0e
TG (v-a-RT g (2.63)
and g=0,1,...,v
and with initial conditions of the form :
u0-) = AJuy + A hl Ly +
_ 2.6b
I (O Rty Ve q+1)A (2.6b)
ql
with j=0,1,...,0; -1, there corresponds a pseudostate
of 2 of the form
By 0= 3 m T D i
—e i
atlp= K (v-q-K) 53 (2.72)
and g=0,1,...,v

with initial conditions of the form

Bé(])(o_) :AijBiq""""'w A{_qﬁ(i) (2.7b)
q!
for j=0,1,...,q; — 1 which produces zero output of 2
y(t)=0 (2.8)

T TN\
where the vectors (B,'( ,—u' ) are generalized

invariant zero-direction vectors for Aj.
Proof. See [10]. o

Corollary 1. From Theorems 1 and 2 we conclude that
there exist an input vector space

c , ojj~tal G 79kt .0
={d = — i,
0 {[u],q(t)]u Z g—lj k( . -q-k—l)!e a
2.9)

ig04, j=u,u+1...,r and q:O,J,...,ai,j -1

which gives rise through the relation (1.1) to the
pseudostate vector space

o’ —1—q[| 0 —q k-1 tD
C i i
={[B' ,(D]z:= iln .
&) {[BJ,q( )]ﬁ z ggj k ( . -q-k 1)‘ 5;
(2.10)
i04, j=u,u+1...,r and g =01...,0; -1
and consequently to the output vector space
Yo ={0} (2.11)
Proof. See [10]. o

3. Geometric Interpretation of the Infinite

Invariant Zeros.
Consider the Rosenbrock matrix P(s) in (1.4) and

define its “dual” polynomial matrix P(W) [1] as



P(w):= W%Pﬁ%ﬁ: Py, +Pgaw+-+Pow G.1)
Then O unimodular matrices U (w), Ug(w). [1] s.t.
UL (w)P(w)Ur(w) = (3.2)
= blockdiagf f,(w),wt 2 f, w),...w™ ¥, (w),
+Q 4~ +qr <
qu qk+1fk+1(W)a ---,Woi ' fr (W), On+p-r,nem-r}
where f;(0)# 0, g, 2Mq =0 and

0< Q1 <sMOkq are respectively the order of the
poles and zeros at S = © of P(s).

The notion of the infinite invariant zeros was presented
by [6] (state space systems), [9] (PMDs of the form
(1.1)), while the notion of generalized infinite zero-
direction vectors for state space systems was utilised by
[6] for the solution of the output zeroing problem in the
state space case. In what follows we present an
extension of the generalized infinite zero-direction
vectors to the case of general systems of the form (1.1).

Definition 2. Let P(s) be the Rosenbrock system
matrix of 2 defined in (1.3)-(1.4), then the infinite
invariant zeros of 2 are the infinite zeros of P(s).
Associated with each invariant infinite zero of 2 there

o ol T
is a composite vector  z, :Eﬁo —Ug % which lies
in the kernel or null space of P(0)= Pg1 ie.
IS(O)ZSO =0 - PngBo =0, and such that P(s)zy =0,

w ol oTY
and a sequence of vectors z =B Yy R
j=1...,q +q such that
qu26° =0

Py-120 +Pgz =0 (3.3)
Pozy + Pz ++Py 17 1 + Py 7, =0
Pz +PZ +-+ qu—lzcz + Pq12q01+1 =0
Pozy + Plza°+1+---+Pq1-1Za°l+q-1 + quza°l+q =0
and

P(S) (26°SCI1+q +a°°SQ1+q_l+...+Z;:-+q)¢ 0 (34)
Then ZBO is called an invariant infinite zero-direction
vector for the infinite zero of order q and Zi°° ,

j=L1..,00+q a sequence of generalised invariant

infinite zero-direction vectors for the infinite zero of
order q. o

The existence of such a chain of generalized infinite
zero-direction vectors is given by the following

Theorem 3. Consider the Rosenbrock system matrix
(1.3) of ) and the local Smith form of its dual
polynomial matrix at w=0 in (3.2). Then for every
infinite invariant Zero of order
gy withj =k+1Lk+2,..,r O an invariant infinite

o o 0T oTY
zero-direction vector z =By ,~Uo ). and a

sequence of generalized invariant infinite zero-
direction vectors

o 0T »TY . -
#=0n ) it arg -
Proof. Let U(w) be the ith column of Ur(w) and

5P (w), P@(w) be the qth derivatives of Ui (w), P(w)
with respect to w. Then its is easily seen that the
vectors

Dﬁiwq g 1 ~(q)(0) N 55
Z24=0 9 0==u (0=0 :
v oou,o d "4

with q=01,...,q;+q, i=k+l1k+2,..r form a
sequence of generalized invariant infinite zero-
direction vectors. &

Theorem 4. Let P(s) be the Rosenbrock system matrix
P(s) of 2 defined in (1.4). Then to an input of the form

IS AT o(g-i
[ ®l= 3 [ure ), (3.6)
with u ) (0-) = —u%., fori =0,1,...,q, - 1
there corresponds a pseudostate of 2 of the form
® = s [p2sa)
L8 = 3 [0 O], 67

with 87 (0-) = =B sy fori =0,1,...,q -1
and a zero output of 2 i.e.
y(t)=0 (3.8)
DOT DOT T .
where the vectors @j ,—Uj ) are generalized

invariant infinite zero-direction vectors for the infinite
zero of order q
Proof. See [10]. o

Corollary 2. From Theorems 3 and 4 we conclude that
there exist an input vector space

U =70l = 3 [4564 0] 69

i=k+1,k+2,...,r and q=0,1,...,G - %
which gives rise through the relation (1.1) to the
pseudostate vector space

& =85 00= 3 [0 0] 610

i=k+1,k+2,...,r and q=0,1,...,G - %
and consequently to the output vector space
Yo ={0} G.11)
Proof. See [10]. o



4. Geometric Interpretation of the Invariant
Indices.
The Rosenbrock system matrix P(s) 0T [S](

of the system (1.1) is assumed to have rank
r<min(n+p,n+m) and therefore the dimension of

the right null space of P(s) is equal to n+m-r. Consider
a minimal polynomial basis of the right (left) null space
of P(s), denoted

[O1(9), Tsa(S) oor Tem(S)] “.1)
(wa(9) wea(® 0 vep(s)])

The greatest degrees of the columns
Gi(s), i =r+1..,n+m, denoted {&+1,Er+2+-++1 Entm}
are called the right minimal indices of P(s), while the
greatest degrees of the rows vi(s), i=r+1...,n+p,
denoted {nr+1,Nr+2,-» Nn+p}  are called the left

n+p)x(ntm)

minimal indices of P(s).

Definition 3. Let P(s) be the Rosenbrock system matrix
of 2 defined in (1.3)-(1.4). Then the invariant right
(left) indices of Y, are the right (left) minimal indices
of P(s) if associated with each invariant right (left)

index there is a sequence of vectors Z = @,‘J ,—ufT )T,
i=01,...,q. (. i =0.1...,q) such that
PyZ0=0
qu_lz(‘)E +P,z =0
(ifg<ay)
Pozo + Pz ++++Py 1751 + Pzg = 0
(ifazqy) (4.22)
Pz + Plzf+"'+qu—1Z§1—1 + quzél =0

%8 Po+2'Pr++2J1Py-1+ 2 Pg = 0
E(ifq2q1)

[7J Py + 2P+ 42 1P -1 + 74 Py =0
a

1R, =0
Then Z. j=01,...,0. (z,’7 j :0,1...,q) are called a

sequence of invariant right (left) index direction
vectors for the right (left) index q. a

(4.2b)

OOooOooOoOooooooooood

Theorem 5. Consider the Rosenbrock system matrix
(1.3) of ¥ defined in (1.3) and the minimal basis (4.1)
for its right (left) null space. Then for every right (left)
index of order &,i=r+1..,n+m, (n,i=r+1
.., p+m) O a sequence of invariant right (left) index-

T ™V .
direction vectors Z; =@f,j s ) j=01,...,& .

@ i=01..m).
Proof. It is casily seen that the vectors

. Dpe, 0 _ 0 o0 _ 543
=0 S O0=U g - = 0=V - )
Zq %qu% i & - %,q El_ui,{q% b q%( )

where

— = — — &
G(S)=T o +0j St -+ . S”

[ =0+ Tt 47 58"
g=01,...,& () and i=r+Lr+2..,n+m
(i=r+1,r+2,..,pt+m) satisfies relation (4.2) and

thus form a sequence of invariant right (left) index-
direction vectors). .

Theorem 6. Consider the system Y. defined in (1.1)
with Rosenbrock system matrix P(s) mm [s]"*P(™™
where rank g(g P(s) =r <min(n+p,n+m). Then to an

input of the form
Erv = ST esk) ) e
Wi O1:= 3 [uo“ P )], withug® (0) = ~ufiin
=

i=01%...,.qq-1andk=01...,q-1 4.4
there corresponds a pseudostate of 2 of the form

e 0lg= 5 B ], Wit BE(0-) =B

fori=01%...,q, -1landk=0,1,...,q-1 (4.5)
and a zero output i.c.
y(t)=0 4.6)
ET ET \ H
where the vectors @]’ Ui ) j=01,..,g-1 are
genralised invariant right index-direction vectors for a

right (left) index of order q..
Proof. See [10]. o

Corollary 3. From the above theorem we conclude that
there exist an input vector space

U = (o h= 3 158V 0] @)

i=r+14r+2,....,n+mand q=0,1...,§ -3
which gives rise through the relation (1.1) to the
pseudostate vector space

& =0pals= 3 5] @)

i=r+4r+2,....,n+mand q=0,1..., -3
and consequently to the output vector space
Yo = {0} 4.9)
Proof. See [10]. o



Let now
\Y; (5) = Vi,o +V ’15+....|.Vi’,7i S’Ii

4.3) : (4.10)
ﬁ_ z, T Z‘?m —15+“‘+Z'705nI ﬁ

with | =r +1,...,n+ P, be the vectors of a left
minimal polynomial basis of the Rosenbrock system
matrix P(s). It has been suggested [6] that the left
minimal basis of the Rosenbrock system matrix P(s) in
state space systems plays the same role as the right
minimal basis for the “dual” system of (1.1). However
this is not exactly the case and the next Theorem
reveals the precise connection between the invariant
left indices and solution to the zero-output problem.

Theorem 7. The zero-output problem has a solution iff
the following m:= 1), 41+---+ 1, constraints between

.
the initial conditions (ﬁ(‘” (0_)T ,_u(q) (0_)T) ,
q=0,1,...,q; — 1 are satisfied

0 Vi 0 - 00
0
D\h%_l Vwi . 9 a
O : : - : 0
DX
%Ii’ni_qlﬂ‘ Vi,r]i—q1+2 Vi,r/i 0
o : e 10
E Vi1 Vi2 Vi,qlg
0 gBO-)O O
®, P, - P _,m u0-)
0 "' 0p®o-) 0 o (4.11)
20 R P
x . .

2m O O 0=
“ % u(1>(0—) D 01

O: :
HO 0 PO B(ql—l)(o_)
u(ql'l) (0_)
for i=r+1,r+2,....n+p.
Proof. See [10]. o

S. The Solution Subspace of the Output
Zeroing Problem.
Consider the AR-representation (1.3). According to [2],

[3] the solution vector space B of (1.3) is comprised of
equivalence classes and has dimension equal to the
mumber of finite and infinite zeros of P(s) (order
accounted for) and the sum of the right minimal indices
(order accounted for). More specifically it is known that

j~1-ap) i gk-1 O
. %, 5 B' D—% O
B= @ k=0 Uu]k[l(fﬂj'q k- 1)'@ a 0

i0¢, j=p,u+l..,randq=01..,0 ;-1

Oq Dﬁl (
i D5q i t D
0 QZOU U, O () 0
i=k+1k+2,..,r and g=0,1..,q —
a g 3.1

B'IE5MI)¢)D
O D 0T U0
i=r+1r+2,..,n+m and q:0,1,..,£i -
where [a] denotes the equivalence class of the solution
a of (1.3) as has been defined in (2.1¢) and the
generalized finite and infinite zero-direction vectors

and the generalized right index-direction vectors are
the ones presented in Theorems 2, 4 and 6. If we now

denote by Bg, B, the projection of the space B to the
space of [B(t)]5, [-u(t)], respectively i.c.

_ . a0 -8
B‘?_gm]ﬁ 2O B 5
(5.2)
AL [

B:= Eu(t)]u OB(t) : (t)%m B@

Then we have the following

Theorem 8. Every input vector [-u(t)]y O L%J gives rise
through the relation (1.1) to a pseudostate vector
[B(t)]z U Bg and subsequently to the zero-output vector

space. We observe also that

B, = US +Ug +U¢ (5.3)
and )

Bs = By + By +B§ (5.4)
Proof. See [10]. o

Definition 4. The pscudostate vector solutions of the
system (1.3) define a subspace of the pseudostate space
X of the system (1.1) :

:{B(t) | ], 0 éﬁ} (5.5)

which is called the general output zeroing subspace, or
the solution subspace of the output zeroing problem. x

Thus the output-zero problem may be described
through the following diagram :

D()

INPUT OUTPUT

SPACE A(p)

PSEUDOSTATE
SPACE

SPACE



Diagram 1. The zero-output problem.

6. Illustrative Example.
Consider the following system 2 :

1 p? @mm_ +10)
p+1 2(t)E_@OO H'®

0
yt)=(-p —p“)%i((tiy E*+plt) E1b)

with Rosenbrock system matrix

(E.1a)

& s+10
P(s):Ep s+1 O B
s st s?asH

Define according to (2.1a)
ot N
COf (-5(1) - 5P (1))z(t - 7)drD

N
1

. 0
Ié(r)z(t— T)dr
0

t
Z,=-nz :-Id(r)z(t— 1)dr
0

Ot .

Zy = mZ = é[('5(T)' (1) z(t- DdrO
) 0

[al=an0z, [a],=a0Z, [alz=a0Zs

where z(t) is an arbitrary function.

a) The finite invariant zeros.
There exist one finite invariant zero A; = —1 of partial

multiplicitiy one ie. 0;, =1 which according to
Theorems 1, 2 and Corollary 1 implies that

ug::<[o]u>(Ef’e§::<ﬁ§e-t§>

b) The infinite elementary divisors.

P(s) has one invariant infinite zero of order 1 and thus
according to Theorems 3,4 and Corollary 2 we have
that

(E1b)
- Yo ={0}

(E.la)

Ug:=(-s0)],)

. oo 0\ewm
Bo-—<@0?(t)ﬂ> - Yo={CG

¢) The right and left invariant indices.
2 has one right invariant index of order 1 i.e. the
degree of U(S) and thus from Theorems 5.6 and

Corollary 3 we have that

ug={l) e ::<ﬁolﬁa(t)§ﬁ>

2 has one left invariant index of order 1 which gives
rise according to Theorem 7 to the following necessary

(E1b)
- Yo ={CG

and sufficient condition for the existence of solution to
the zero-output problem

~B1(0-) -~ B£7(0-) ~u(0-) - u?(0-) =0

d) The Solution Subspace of the Output Zeroing
Problem.
Denote

B, =US +Ug +Ug =([a(v)].)

B; = B + By +BS =By :@ﬁﬁei %ﬁaa)@

Then according to Theorem 8 we have that

~ (E.1a) ~ (Elb)
B - - {0}
The space B; :
0 0 10
t)=A LA o(t) +
% B(1) 1HE T 72H0H (t)
By = B() | O 0 0
B +§[(-5(r)- oW (1)) z(t - 1)dr0 A,
H 0
is called the general output zeroing subspace, or the
solution subspace of the output zeroing problem. .

7. Conclusions.

A geometric interpretation of the finite and infinite
invariant zeros and the right and left minimal indices
of a system has been given in terms of the solution of
the zero-output problem. More specifically it has been
shown that while the first three prementioned
characteristics of the system give rise to the solution
space of the zero-output problem, the fourth gives rise
to conditions for the existence of solution to the above
problem.
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