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ABSTRACT

The main contribution of this paper is to present a) an algorithm for the computation of the
generalized inverse of a not necessariiy square two variable polynomial matrix and its Laurent expansion
and b) some applications of the proposed algorithm to the solution of diophantique equations.

L INTRODUCTION
Consider the 2—D polynomial matrix

91 32 .,
Azpag=3 T Apzizd € Rz ™ (L)

iz) j=0
where Aij EIR‘"“’, i=0,1,...,q, and =0.1,...,q5. The

problem of the investigation of the generalized
inverse of a polyncmial matrix with one or more
variables has been the concern of many acientists
because of the large number of ita implications in
multivariable system analysis.

The problem of the computation of -the inverse
of a regular polynomial matrix has been
investigated in its general form by [2] while the
same problem far cx;cgular polynomial matrices
with two variables by [4].

In the nonregular case ie. n#m or n=m witk
det{A(z,,2,)]#0, the generalized inverse of constant

matrices defined by (7] and a numerical algorithm
for the computation of this matrix is later given
by [1]. A recent approach for the investigation of
the generalised inverse for one variabie polynomial
matrices has been proposed by [3] agcd the
extension of this attempt in the two variable
polynomial matrix case is proposed in this paper.

The interest of this important problem starts
from its numerous applications i.e. computation of
the transfer function matrix of a system, inverse
systems, solution of systems, controllability and
observability matrices of gemeral polynomial
matrix  descriptions  {PMDs), solution of
diophantique equations
cumerous applications e.t.c. (see [3]).

The structure of this paper is seperated in four
sections. In the first section we give some
prelimizary results concerming the definiti-n of
the generalized inverse. in the second section we
presect an algoritkm for the computation of the
generaiizead inverse of the matrix (1.1), in the
thira section we compute its Laurent expansion
l.e. 10 case wnere it is unicue, and in the last
seclicn we give as an appiicaien of iiese aigo—

which gives -rise to —-

ritbms the sojution of the general dicphaniigue
equation AXB=C in case where A, B, C are
known two variable polynomial matrices and X is
the unknown t{wo variable rational matrix which
satisfies the prementioned diophantique equation.

2 PRELIMINARY RESULTS
The definition of the generalized inverse of a
constant matrix was originally defined by (7] :
Definition 1. For every matrix AEIRnxm, a unique
t x
matric A €R™"®  exists which is called
generalised inverse satisfying the following :

t t t ¢t
(i) AxA xA=A, (i) A xAxA =4,

t t t f
(@) (AxA')T=AxA', (iv) (A xA)T=a"xa
whete AT denotes the transpose of A. In the

special case that the matrix A is a square and
nonsingular matrix, the generalised inverse of A is

smply its inverse ie. A :A._-I. In cases where

now there exist a matrix A%! which satisfies oaly
tbe first condition is called {1}—inverse.
{1}—nverses are not unique and play an
important role in the solution of diophaatique
equations as we shall see in section 5. of
In analogous way we define the generalized

inverse A{z;,zz]rém(zl,zz)m‘n of  A(z,z,)€

Rl l.zgin‘m as the matrix which satisfiessthe pro—

perties (i)—iv) of the Definition 1. The unique—
ness of #his matrix is obvious because the proof of
the uniqueness in [7) is idependent of the form of
the matrix A(z,,z,). Consider now the following :

Theorem 2. (1} Let AER™ ™ and

.. n Ny
a(s):=getfsl ,=Cl=a,s +am  +°r=ay

with a,=1, be 'ne characteristic Joivnomial of the

-

. . T . T

proguct of A anc :its trapspose A e C=A=zA".
If k%0 is the iargest integer such that ap #0, taen

e
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ine generaszec inverse of A is given DY
T - T k=t g=1
= —a e [
A = —a T xA «[C -a.._C - LU

eise (k=0' A =0. 0

A numerical algorithm for the impiementation
of the above theorem is given by [1]:

Algorithm 3. (Computation of the generaiized
. . . pa*m
inverse of a constant matrix A€R )

nxm T . .
Siep 1. Let AER and C=AxA . Conosider the
sequences {ac,al,...,an}, {BU!Bl"“'Bn} constructed

by the {oilowing way

By = Ipn
tr[CxB
By = CxBy+ailn al=———r£9'1"£']‘
{CxB ]
By = CxBrazlp ap =—t—r'-(-:—2--~-‘=L

trfCxBp i
- n
Step 2. If k#0 is the largest integer such that
ay#0,then the generalized inverse of A is given by

1=C‘Bn_[+anln an =

1 -1 T
A =—ay xA xBy
}
elae (k=0) A =0. 8

3. GENERALIZED INVERSE OF A TWO
VARIABLE POLYNOMIAL MATRIX.

Consider the two variable polynomial matrix
(1.1} and its transpose

SO LT S nxm
A(’l”'ﬂ = EO i‘:ﬂ AijZIZE € m[zt‘zz] (3.1)

Following similar lines with Theorem 2 we can
easily show the following :

Theorem 4. Let Afz,z,) € [R[zl,zg]n!m and

a(n,z1.12}=d:t[aln—A(zI,zE)*A(zl,z.‘,]le (3.2)
= a,(z,,2,)s8+a (2 ,z5)8" "+ - - +anlz,2y)

with a,(z,z4)=1, be the characteristic polynomial

of A(z,24)% A(zl,zi)T If k#0 is the largest

integer such that a,(z,,29)#0 for (z,,2,)EA(#{0})
gmz, then the generalized inverse of A(z.z,) for

(2,.25)€7 s

ey (2
If r=0 is tae largest integer such that a,(2,,24)#0,

!  aml
then A(z.2,) =0. For those 1_:1.:.3,16[}{ —A we use

the same algoritkm.
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Proof. [ can oe reaqily seen tnat ile proof is ine
same witn :zis of Theorem 2 bSecause 1t i3 ince—

pendent of the variabies of the matrix Alz 2,4} C

A numerical algorithm for the impiementation
of the above theorem is given simiiar to the one
presented in Algoritam 3 (the proofs are exactiy
the same).

Algorithm 5. (Computation of the generauzec

. . nxm
inverse of A(z,z,)€R[z .2, )
i )

Step i. Let C'[zL,zz)zA(zl,zz}*A{z1,z2jT. Consider
the sequences {ay(2,.29), ap(2,29)} {Bglzpzy)
.By(2,2,)} constructed by the following way

80(31-12} = ]n
By(z1,22) = Clz,22)*Bo(z1,22)+ay(zp22)In

Bo(zyz7) = Clz22)Bi(z22)+22(z 22}l
{3.3a)
Bn(zy,22) = Clz1,22)Bn-i(2n22)+2an{z122)1n
and
(s )
ayzyta) = — tnszuzz)l?mzhzjl
1. ! . 1
ag(zy1) = — CIFC(Z__ZQ}?_{Z!_ZQJA_
.............. (3.3b)

tr[Clz1,22)Bn-iz1.22]]
n
Step 2. If k#0 is the largest integer such that

a,(2,,25)#0 for {zl,zT}E;l[#{@})gmz, then the

generalized inverse of A(zl,zz) for (z,,2,)€A is

an(z ney) = —

-“‘

: t -1 T
Alz2,) ==ay(z,29) Alzpzq) By (213, (3.4)

1f k=0 is the largest integer such that a,(z,,2,}#0,

t
then A(z,,2,) =0. For those (zl,zz)E{Rz—A we use

the same algorithm. a

It is seen from (3.3) that :
2iq, 2iq,

i - ¥ a jl j?
azp,22) 1920 jr=0 al.jt,jzzl 232 (3.5)

for i=0,!,...,0 and
2iq,2iq, . .
S B, 2lz? (36)

Bi(zy,z2) = . A
1( h22) J|=D J2=0 Lipiy ©

where B a are

for 1=0,1,....n—1, C L.
lijil.]E :1.;].!.]?

constant coefficient matrix and scalar of the
for the compuiation of tae generalizec inverse of

Afz),27) we need tae integer k, the guantities
ax{zy,z7) and By-j(z,22) l.¢. the coefilcients

yor s



a . and the coefficient matrices B,

kl.jll.i? Kmlljt\j}‘
defined by :
2kq | Zka, i
afzyz)= .5 .8 a0 glig? 37
k2 b2 lel:\ Jo=0 k'JI'J'Z Lol (3-7)
and
i oy 2oy .
B, (zyz9)= . ) ) oLz lzne
x-1(2022) jT=0 J;=0 k=L, 1 =2
(3.8)
Now taking into account that :
T
Alz,22)xAlzy22) " *Bi(z),29) =
(3.9)

r

2i+1)q Ai+1)ay[ iy i Fl—m1irﬂn2
m

I
iT=0  iY=0 1=0rn§=DLnI=U ay=0
A, . AT B zliz:t,2
ij=m—n,i,—m,—n, 15 ,n Lmymg) !
and substituting (3.5), (3.6) and (3.9) in the
recursive relations (3.3), we obtain the following

recursive relations that determine a. nd

. - a
1+1|.111J2

8 forj.=0,1,.2(i+1 d z=1,2.
1 s for j, (i+1)q, and z

Algorithm 6. (Generalized inverse A(zjzq)t of

Alzz3))
Initial Conditions

BO,U,D =1In .o (3.10)

Boundary Conditions

B,. . =0 ¥Vji>0z=12 3.11
GJI:J‘? Jz ( )

B.. . =0 jz=2iqz+l,..,2(n—l)qz z=1,2 (3.12)
1!J1}J2

Recumsive Relations for aifs;.s5)
i Iz f'ix-ml

- 1
a. L= — e xtr E
1+l 1+1

iz—mo T -
I__ A , A B.
n 2...0 H—My—n,ly=My—n, N0 L, m,m

iZ=U,1,....2(i+l}qz, 1=1,2

m:z{] m2=0 n1:0

i=0,1.....a—1 (3.13)
Recummive Relation for Bi(sy.35)

il 1?

i1=m; i;—mq

Bi'*'Ln.jlu gz(mz:::O m§=0 L n?:(} 112:0

5
T -
A. . . +
t—m,—n,ly=m.—n, n:.nzj LM, My

+a o0
1‘!"1,1:,12

iz=0.1.....2(i-.~l}qz. z=1.2

1=0.1,....n—=2 (3.14)

]

) degz[p{z pZqe)l:=degip(z,2)]. Then defire

222

]

Terminate

FIND x : ap g lzpz)=-- "=agizy,22)=0

G —_— s s

- . = . =0 Vi el
k+1.11,;2 1ZEN

0,iy,l,
then

— B = Mk— =17
= Pty 0bedimile, 2=t

iz=0,l‘..,2qu z=1,2

Tplg

a (3.15)

iy T kil
OUTPUT
. 2kq 2kq s i, |
A 2 —ad . . . . x
(z1,22) Li%=0 i¥=0 3-111122‘ )

2

[fzb—i)q;{zk—nqz{ iy
x E E

i =0 i 2=0 m =0 m,=0

AT B 2422 (316) o
I—myiy—my mm,| 172

It's readily seen that the generalized inversion
algorithm is a three—dimensional algorithm since
it depends of three independent variables Lipl,.

Note also that a) we use the same algorithm for

(z 1,22)6132-4& i.e. ay(z1,22)=0, by finding another

1 such that a;(zy,29)#0 for those (z;,z;}Emz——A and
b) in case where k=0 is the largest integer such

1.
that ay(2),22)#0 then A(zy,z5) =0.

4 EVALUATION OF THE LAURENT
EXPANSION

It is known that the Laurent expansion of a
rational matrix of two variables is not always
unique [8]. For this reason we separate this
section into two parts. In the first part we give a

Decessary condition such that a unique Laurent
. . to .
expansion apout infinity of Alz,,z,) exista, while

in the second part we give an algorithm for the
computation of this expansion when this condition
is satisfied.
For a two variable polynomial p(z,z,) define
L}

dcgz [p(z.2,)] as the degree of p(z,,2,) in z; and
1

similariy define d:gz [p(z.25)]. Denote also
2

= dcgzi{ak(zl.zzj] =12

f; = wg, [(By.i(2.29)] i=1.2

1

r:=deg_ln(z.z)] (4.1)

Then following similar lines with [6, Theorem !]
we give the following




Theorem 7. Suppose that r =— Ty = Iy e
a #0. Then the Laurent expansion abou:

12
- - . | i
mfinity. convergent for large enough .!'*'1f ang

t
o T . . |
fZ9i, of A{z,7,) [ unique and is given by

n =T =@

1y 19
Alz,zy) = L )) H1 izt (42)
L=y, fp=v, 172

where vizzdegz_[A(zl,z?j Iy i=1,2 are finite and
i
Lave some minimum value defined by
vi = fi-*.-qi—fi i=1,2 (4.3) o
o case where & =0, the Laurent expansion of
Tpty
!
Alz,z,) may not be uznigue as it has been shown

in [4], [8]. The computation of the matrix
coefficient terms HI ; in (4.2), for the case where
12

3 #0 is presented in the sequel. From (3.4)
1ia

t
2y (21.29)A(2,2,) =-—-A(zl,22)TBk,1(zI,z2) (4.4)
t

Substituting ay(z,,z,), By (z2,), Alz,z,) and

-

Alz.2)? fom (37), (3.8), (42) and (3.1)

respectively in (4.4) we obtain
2kq.2kq2.._-- o -0 -m
i FU e .
[E X a._.zzlzézj*[z X

. 1l .
—{ i - "2 H— —_
1 1‘0 i 2_0 i L=V, I,=v,

i, 2(k=1)ay 2(k—1)q, g, g,
B zilz;?J: PR [__z p
r i,=0 i,=0 1,=0j,=0

AT .. B, . zflz;
Limdpbe—dy dpdef t

(4.5)

2(k=1)q, 2(k—1 Jag . S
= I h> B, . zj1z)2
) . i, 172
1,=0 1,=0
Equating the coefficient mairices of the

. 1, i o
corresponding power of z ! 1.2 on both sides of

the resulting equaticn yields .
r r
~ L 2
B . =L ¥ a g (4.6a)
iz Jpdy LTl

-iI:O Jp=U

for (0,0)<(i,i,)<(f,.5,) ana

Lrae
) a.  H. .
J,;=0 Iy=0 iy Tl

[ S e

0= (4.6b)

for {i;<=r Miglva} V {i,<v A iycmr.j,

Ab aigorithm wnicn sur-marizes T0W g Lnc ine

solution E.

for P b (L,09) S{v  va) of (4.6
Livla Y. - !

L -
Is given by the folowing

Algorithm 8. {Laurent expansion of Afz,.z,; ,

Siep 1. Compute 1, fg‘ Tpofgy fWy, Vo

Step 2. 1f A'¢'1'[-r-r2 then Stop.

Step 3. d,

Next i
Step 4. For i=—r1 to v,
VTl orer i f,
E =- % H >
j=0 i=0 ja=0
T B ]
A P . - j':d;
rl+1+.}_J1r{2__J2 J]_rJQJ 4

Next i

1*n bt
Step 5, Dy = | . . |]
d d I = d,]
[ flIn fl_l n ¢’a J '
% - [P
k1o 0 |
Ioa 1
kr-l1,i'o .k,rl,l
Pi=1: : 0
T
k,0,i'n klio
0 *0,il
O a, L oa d
k,0,i ki |
J
For i=1 to f,
i-1
Dij=—|IDP . |D
j=0 ) ry—i+j[ 70
Next | .
- 9, 9,
Step6.B. , =— % L A? .. . B,
Lpig 1 =04,=0 rHrieT2 dpd;

For E:—r2 to v,

S ~

(H B :
e N T R
|H" -1 \:;J lB‘."—l Lo
(7 =T p, Lo 2

|I ' | j=0 Pl

CH_, B

Next



Step Tl <—r; AdySvay V{idv. A y<—T,}

) r 1

-1

il m—-

rofy =00,
.
|

S TTTAC TR g ~i
LY RS UL I Ll AL EJ' (ji‘jQJ‘F(rl.-rQJ

L i
Step 8. Al2,2,) = L X H.l ; zitz:,_2
j=v) iy=v, 2

END

5. IMPLICATIONS OF THE GENERALIZED
INVERSE IN LINEAR SYSTEM THEQRY.

One of the important applications of the
computation of the generalized inverse is in the
solution of the equation AXB=C presented by [7].
The above problem may be extended to the case
of two variable polynomial matrices as we shall
see in the sequel.

Theorem 9. [7] A necessary and sufficient
condition for the matrix equation AXB=C to

Pt
have a solution is that AA CB B=C, in which
case the general solutr.on is

t t
X=A CB +Y—a'aYBB (5.1)

where AT, BJr are the generalized inverses of A
and B respectively and Y is arbitrary to within
having the dimension of X. o
It can be readily sdenfrom (7] that the proof of
the above theorem is independent of the variable
existence in the matrix A and thus we can state
the following
Theorem 10. A necessary and sufficient condition
for the matrix equation A(z,:2,)X(z p2g)Blzizy)=

C(z,z,) to have & solution is that Alzyzq)x

t t
Alzyzy) C(ZI,ZQ)B(Z pZg) B{ZI,ZE}ZC(Z 1Za)

Yz 1'22)Em2v in which case the general solution is
N t t
X(zpz9)=A(z,2,5) Clz,,2,5)B(2,,2,) +¥(z,25)—

' t
Alzpzy) Alzpz,)Y(2,,2,)B(z,.24)B(z, Z,) (5.2)

where A(zi,zz}i, E(zl,:g}? are the gencra‘lized
inverses of A(z,z,) and Biz,z," respecti .y and
Y(z,2.) is arbitrary to witkin lhaving the
cdumension of \(2 Z?} s]

We have to note here that the above theorem
remains the same i we substitute the generaiized

t
Alz,z,)

tnverses of A(z,.z,) and Blz,.z,) respectiveiy

1
B(z,z,) with the {l}—

Lnverses

224

s

An interesting application of Theorem 10 is the
investigation of the solution
dlophantique equatian

Alz,25)X(z,2,)+B(z 129l Y(zy2,)=Clz, 129 (5.3)

space of the

where A(zz,), B(z,2,) and C{z,:z4) are known
two variable polynomial matrices and X(zy.z,),
variable rationai

Y(z,z,) are unknown two

maztrices.
Theorem 11. A necessary and sufficient condition
for (5.3) to have a solution is that
[Az [rzg} 3(21,22)]*[A(31,22) B(z
x Clzp29) = Cz ,24)

1
piall

(5.4)

¥(z l,zg)E[RZ in which case the gene:ai solution is

[“’*””J = [A(zy29) B(z, 2,1 Clz,20)+
Y(z ,24)

* [XO(%%)J — [A(z,2,) B(z 32”Tx
Yolzpz,)
(5.5)
x[A(zy25) B(z,2, )][ Ka(w:}J
Yo(zy29)
Yo(zpzz)T]T

rational matrix of two variables and [Alz,3,)

where [Xﬂ(zl,zQ)T is an arbitrary

t
B(z,,24)] is the generalized inverse of the

compound matrix [A(z,,24) B(z,2,)].

Proof. The proof is a direct application of
Theorem 10 if we take intc account that relation
(5.3) may be rewritten as

[A(z,2,) B(zl,zg)][ X(“v‘?)J = Clz,2,) (5.6)
Y(z,z2,)

which i3 a special case of the relation AXB=C. O
The investigation of the solution space of (5.3)
plays an important role in problems of 1=D linecar
systemns as like as parameterization of stabilizing
controllers, robust stabilization, disturpance
rejection, reference tracking, model matching,
Hy—cptimal control e.t.c. {see [3]). Here we exa—

mine the model matching problem in 2=D case.
Consider an open loop system S, with transfer

. . N m
function matrix G(z 02 -‘,JEfR(z l,z:)n,

}'{2 li:Q}
Glz,.2q) e

u(z,.2,)

Diagram 1. ":pen loop system.

.Ll.i‘

R ROk

F
T vy
o

A

-a
2

~
=




We wouia .xe to L.ad out wnen there exists an
outputl (eedoack of the form
ulz,.z4) = — Flz 2wz zg)+vizyz,) (5.7]

. .m*n ; X S

with Fiz,.2,)6R(z.,2.5, such that the ciosed
s nia
loop system
A u F—_———}'

- I 5\ '
—0—| Glz,z,) —O—

Il

i F(z2,) —

- |

Diagram 2. Closed loop system.

. . ' axm
has transier function H(z,z,)€R(zz,) . We
would lke therefore to find out the rational

{._ aatrix F(zl,zz)Em(zl,zg)mxn which satisfies the
following equation
. -1
H{z,,24)=1,+G(z,,2,)F(z,2,)) "G(z,2,)&

G{zl,zg)F[z1,:;,)&(:1,22}=G(zl,z2)—H(z1,22} (5.8)
Let G(z,,29)=G(z ,2,)/8(2,,2,) where G(z,,2,)€

axm
)
Riz .z,

muitiple (lem) of all the dezominators of the
mairix G{z,z,). In the same way, let H(z,z,)=

and g(z;,z4) is the least common

iii(zl,zz)fh(zl,zz).‘efb.ch h{53) may be rewritten as

G(z ,z29)F(z ,24)H(z ,29)= (5.9)

=G(z,,29)h(z,2,)—H(z,,2,)8(z 2 ,)
fn the light of Theorem 10 we can easily obtain
1e [ollowing
Theorem 12. A necessary and sufficlent condition

for the equation (5.9) to have a solution is that
- - to~
G(zl,z.‘,}G(zi,z:.j [G\z!rzth(zp:g}—'
- - t-
—H{z,,29)g(z 2,)]H(z .25) H(z,2,)=
=G(zz9)h(z,24)—H(z},29)g(z,,25)  (5.10)
in waich case the general solution is
- t -
Flz39)=Glz.25) [Glz25)h(z 2 9)—
- - 1 _
—t(z.2,)8(225)]H(z2,) +Y(2 29—
- r- - - 1
—G(z,.2,) Glz,.25)Y(z 29 H(z 29)H{z, 2,)
wheze Y(z,z,) is arbitrarv to within having tzne

- b :
dimesznon of Flz,z.) and Glz,z.) . H{z,.z, are
! Bt !

the generauzed toverses of Giz,.z,) asc Hiz.:z..
respectiveiy.
Proof. Let Afz,.z,i=Gizz,), Blz,.z.)=Hlz 2.,

Flz,z0=X{z wiap and  C{z,2,)=G{z,2./h(2,2.)

—H({z,.z,)8(z,24) in Theorem 10. Then the proof

of Theorem 12 follows.

6. CONCLUSIONS

A three dimensionai algorithm is determined for
the computation of the generalized inverse of a
two variable polynomial matrix in terms of its
coefficient matrices and its Laurent expansion has
also been evaiuated under some specified
conditions. The whole theory has been illustrated
via exampies in Multidimensional Systems Theory
i.e. solution of diophantique equations and the
medel matching problem.
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