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Abstract. The main purpose of this paper is to determine two new algorithms for the division of the

polynomial matrix B(S}E[R[s]pxa‘ by A(s)Eﬂ?{s]po a) based on the Laurent matrix expansion at s=wm of

—1
the inverse of A(s) i.e. A(s) and b) in a similar way to the one presented in [4].

1. Introduction.

Let AG)ER[P™P (AG)EREYTY) and B(s)e
Ris)”™? be regular i.e.

B(s) = Bys™+Bs™ 4+ - - +B_€R[P"Y (la)

A(s)=Ays"+A 5" e +A R YERSPP)
(1b)

with A, #0 , ByF0 and m?n.
of > oF pxq 2

xp
Definition 1. [4] The
Q(s)ERP™ Y (Q(s)€R[s)P™Y) anc R(s)eRT T

(R(s)E[R[s]pxq) are the left (right) quotient and
left (right) remainder, respectively, of B(s) on
the left (right) division by A(s) if

B(s) = A(s) Q(s) + R(s) (2a)

( B(s) = Q(s) A(s) + R(s) ) (2b)

and A(s)_lR(s) (R(S)A(s)_l) vanishes at s=wm
(if A(s) is row (column) reduced then an equi—
valent condition is that the degree of the ith
row (column) of R(s) is less than the respective
ith row (column) degree of A(s)). The above
division is always possible and unique. a

The problem of the determination of the
quotient and the remainder of the above division
was the main point of interest in a large number
of recent papers [2],(5]—{8], because of the large
number of its applications in linear system
theory. [2], [6]—{8] use various forms of the
polynomial matrix A(s) useful in the determina—
tion of Q(s) and R(s) in a recursive way. The
division of a polynomial matrix B(s) by the
matrix pencil (sE—A) has been studied by [5] in
a complete different form based on the form of
the Laurent expansion at s=x of the matrix

matrix polynomials

{sE—A) . An extension of the resuits presented
in [5] and thus of the generalised Bezout
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theoremm for the case where both polynomial
matrices are in general form is proposed in
section 2. This result gives rise a) to a relative
Cayley Hamilton theorem for polynomial
matrices in terms of the fundamental matrix

sequence {H,} of A(s)_1

expression for the relative resolvent matrix of

and b) to a finite

A(s) ~ in terms of the Tschirnhausen polyno—
mials. An extension of the Generalised Bezout
theorem for polynomial matrices is also
presented in the same section in a quite similar
way to the one presented in [4]. Without loss of
generality we study in the sequel the left
division of polynomial matrices i.e.when the left
quotient and the left remainder are to be found.

2. Polynomial matrix division and other resuits.

Consider the polynomial matrices A(s), B(s)
defined in (1). Then a first way for d:termining
a left quotient Q(s) and left remainder R(s) is
given by the following

Theorem 1. [9, p.37] When the polynomiai
matrix B(s) is divided on the left by the
polynomial matrix A(s) then the left quotient
Q(s) and the left remainder R(s) are given
respectively by

Q(s) = polynomial part of A(s)_lB(s} (3a)

R(s) = B(s) — A(s) Q(s) (3b)
Similar results holds for the right division of
polynomial matrices. o

Regularity of the polynomial matrix A(s) implies
the existence of the unique Laurent expansion
®
A(s}_l =% & s (4)
k=—u
at s=m, with g the greatest order of the infinite
zeros of A(s) (9, p.196]. A methed for finding
the relative fundamentsl matriz {Hk} in terms



of the coefficient matrices of A(s) is given in [3).
Defining
B(Hy] = H By+H, B+ - ‘+Hy B (5)
Ay = AgHy+d Hy - +AH, o (6a)
ATIH = HyAp By A o +H, AL (65)

A[B[H,]]=A(B[Hy]+A B[H, |+ -+A B[H, ]

-nd
(1)
B[A[HRH:A{Hk]BQ+A[Hk_L]B1+- -+A[Hk_m]Bm
(8)
we have the following :
Lemma 1.
a) A[B[H,]] = B[A[H,]]
0 i#n T 0 1#1’1
b) A[H;]= . A [Hl]: .
Iq I=n Iq i=n
Proof

a) A[B[HkJJZAOIHkBO+Hk_IBI"?" .+Hk"mBIII1 +
+ A(By Bo+Hy B+ +Hy B +

+An[Hk'ﬂBD+Hk"H'].Bl+-+Hk'm‘nBﬂlj=
= [AOHk+AlHk'l+. o+ AnHk—n] B{) +

+(AgH (A Hy - +A H, B, +

+[A0Hk-m"'AlHkvm-L+'+AnHk~m-nij=

= B[A[H,]]

b) The result can be proved by equating the
coefficient powers of s of the left and right term
in the equation A(S)A(s};qu(A(s)_lA(s)zlq].U

We can thus state the relative Bezout theorem

Theorem 2. When a matrix polynomial B(s) is
divided on the left by the regular polynomial
matrix A(s), the quotient and the remainder are
given respectively by

m .
Q)= T BHTT (9a)
l=—pu
and
n—1 i
R(s) = iEO onAjB[H"““‘”"j]JS
Proof. Consider the difference :

B(s) — A(3)Q(s) = (B,s™+B s™ ..

n—l—i

(9b)

“+B_)

-1
—Ags A" 4 -+An)({H_ﬂBﬂJs“+m+- :
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+[HBy+Hy B+ - +HB_]) =

:(Eosm«f-Blsm—lﬂ--+Bm)—[A[B{HH Pj}s“m*“

GHATmtn—=l
+A{B[H_ﬂ+1},s + -rA[B[Hm+n}}_.
n—1 1 - ‘n—l_i\

- X |3 ABIH )]s J:

. - - -]
1=0 LJ:O ]

(10)
(Lemma la) o .
= (Bgs +Bjs +- *+Bg)—

—{B[A{H_}‘J]s“mﬂwh- .-+ BlA(H

aslp ] n—l—i
- X L ABH_ . Jps
i=0 L:D ] m-+i+1—]

However from Lemma 1 (b), we have that
B[A[H-—;»J]:B{A{H*—p-}-l”:. *=B[A[H, []] =0

B[A[H, ]l = By fori=0,1,..m (11)
Thus from (10) and (11)
R(s)=(Bys" +B [sm_1+-+BmJ—[Bosm+Blsm_l

o—l1r i .
—1—i
“ 4B — ) . 11"
tretBy iiﬂ[.EDAJBIHm+I+l—JJ : J
atpl n—]—i
=L |ZABEH_ .. ]| a
=0 L.:O J rn-&-1+l--—JJ

We can check from (4) and (9b) that
polynomial part [ .-\(s}'-lR(s) ] =
=H_, Ag BlHy, ]+ 4

B [AB{HG o +A BH,, ) + H_ |

B[quI +oe '+[H0[A[}B[Hm+n]+' "
FA BHp )+ -+ HY ABHp I =

Ag
]sp+n—-2

= {[H_,Aq] B[Hy, )} sl

+{[H A +H
{H_A,

mﬂ]

—u+1 AOJB{HmﬂI +

+ [H_ AgJBlHy,J} HT2 n
+ {[HoAn-1+ Tt +Hn-1 AO]B{Hmﬂ]

(6b)
+e 0 HHAGB[HL, ) =

T,.. . +n—1
= AT[H_ ] BlHy,, & +

T 1. T
HATH_, B[y J+A H_ )

Etnfn .E;:mxmwﬂ A ek T

|
|
|
o e B g }

LR

e Al b




—2 T
VBlHyl} 70+ +{A [H, B(H. ]+

Lemma 1b

foe+AHJB(HL = 0

and thus A(s) R(s) vanishes at s=w. o

Corollary 1. In case where A(s)=sE—ASA;s+A,

with det[E] not necessary equal to zero the left
remainder on the division of B(s) by A(s] is
according to Theorem 2 equal to

R(S) = AOB{HmQL] = EB[Hm+1] (13)
which coincides with the results in [3]. a
Corollary 2. The above Theorem is independent
of the regularity of the coefficient matrix A i.e.

we may have a polynomial matrix A(s) as in (1)
with det[A,]=0. In case however where

det[A]#0 the leading coefficient matrix in the

vaurent expansion of A(s)™! is not —y but n [1]
and thus the left quotient and remainder in the
above devision are given respectively by

m .
Q(s) = I BEJs" ' (l4a)
i=n
and
ol n—l—i
R(s)_iEU [jEUAjB{Hm+i+l_j] 8 (14b) O

Corollary 3. A(s) is a left divisor of B(s) iff the
left remainder of the division of B{s} by A(s) is
zero or equivalently iff

n-lp i n—l—i
R(s)= _E [‘E AjB[Hm+i+1_j] s =0 (15)

1=0()=0
or equivalently iff the coefficients of the powers
of s in (15) are equal to zero i.e.

Ay 0 e

Ap.y Apg it Ay
Hyey Hp ) 1 0
Hpwp Hygey -0 Hy B,
“ | : S co (=007
Hysp Hypen-y oo Hyp Bn

Thus (17) is a necessary and sufficient condition
for A(s) to be a left divisor of B(s). A similar
statement holds for division on the right by
A(s). In case where A, is nonsingular then the
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first matrix of the left term in (17) is
nonsingular and thus (17) is equivalent to :

Hyey Hp won Hy B,

Hyeo Hpgey - Hy B,

: : . : : =0 (18)
Hoen Bpen- o0 Hp By o

By letting B(s):&(s)xIq:dct[A(s)}*Iq we
arrive at the relative Cayley—Hamilton theorem

in terms of the fundamental matrices {H}

defined in (4).

Theorem 3. Suppose that A(s) is regular with
{Ey} given by (4) and

det[A(s)] = p0.=.£+pls£_l+- +-+p, (19)
where nq?#>n. Then
A(Hy)=p Hy+p,Hy (+- - -+p[Hk—£ =0 (20)
for k>¢ & k<f—p—n.
Proof. We have that

As) Al 7Y = Adifa T D)

Substituting A(s)_l from (4) and equating the
coefficients a) of the negative powers of 5 in (21)
and b) of the powers of s greater than u+m (see
(23)) we obtain {20). g

A(s) is a left divisor of A(s) and thus from
Corollary 3

®
Apy App ttr 4y
te1 B By Polg
H H «++ H p,l
N 42 T+l :2 :lq ~0 (22)
H H H

tsn Bpgn " Hpd LRl
Comparison of (21) and (9a) also allow us to
express the relative adjoint matrix in terms of
the sequence {H,} :

—1

Adj[A(s) )= (23)

_ 4+n p+n—1
_,[H_“po]s +[H-—p+lp°+H—pp Js +
ptn i
+ o +{H pg+H, . P+ - +Hyppl= L aH,. s
i=0

or equivalently as




. -1
AdjlA(s) ] =
_ s+ H+n—1 p+n—~,
= H*# [Pes” 4P ys TP
pn—1 s+n—2 p+n—{—1
_#+1[pns +p, +=+ ]
+ e +Hy [pgs +pys 4 +py] +
LI -+ (24)
n
+ Hy. [postpy + Hy [pg] = _z Ay(s) Hy
I=—un

Thus we have derived the following

Theorem 4. The relative resolvent matrix A(s) is
expressed in terms of the relative fundamental
matrix {H) } by the relation

—1 1 £
A(S) = d_e-m { E Ai(s) Hi} (25)
I=—p
where A(s), I=—p—u+1,.,m are the

Tschirnhausen polynomials defined by (24). O

Example 1. Let
B(s)= Lo 52+ 01 s+ Lo = B052+B1.=,-+-B2
00 10 01

an

A(s}:[s 1J={1 0J3+[0 1
0 s 01 00

where det[A,]=2#0. Then we have that

EA05+A1

_ - -1 —
As) = IOJ L_fo lJ SEE T

01/ % o o
Then the left quotient of the division of B(s) by
A(s) is given accc.ding to Corollary 1 by
Q(s) = B[H Js+B[H,)} =

= [H,B,]s+[H,By+H,B ] = {s 1J
10
The left remainder on the division of B(s) by
A(s) is given according to Corollary 1 by
R(s):AQB[H3}=A0[H350+H2B1+HLBZJ: [0 DJ a
01

Example 2. Let

B(s)= 1o s2+ 01 s+ 00 EBosg+Bla+B2
00 01 00

am=[t o=[ 0 T 0 ZAgsHA,
o1 loo) |o1
where det[A;]=0. Then we have that

and
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A(s)“‘=[l P R w(l OIEH_,M;HD
0 1) (0 of (o1
Then the left quotient of the division of B(s) by
A(s) is given according to Theorem 2 by

Q(s}:B{H_1]53+B{H0}52+B[H1}s+B[H2] =
:[H_180]s3+[HGBG+H,IB;J‘52+{HIBU+HCB:+
+H_1szs+[H2Be+HlB1+HOBQI=’52 _3?+’J
The left remainder of the divisio;zo of B(:) by
A(s) is given according to Theorem 2 by

R(s)=A,B[HJ=A,[H,B,+H,B,+H,8,]=|* ]

[oo)
It is easily seen that Q(s), R(s) of the form

Qls) = sisly+Lly, —52+5(1+L22}+L:2J
Loy sLy,
R(s) = [‘Ln Ly | (E.1)
Ly Ly

where [‘ij are arbitrary constant matrices are

also satisfy the equation E(s):A{s)Q(s)+}.' a).

—1-
However we can check that A(s) "R(s) vanis'.as
at s=w Uf LiJ-:O and thus Q(s) and R(s) are of

the form (E.1). This example shows that
condition (2) does not guarantee by itself the
uniqueness of Q(s) and R(s) but the further

condition of stricly properness of A(s)—lR(a)
must be satisfied. a
Assumne now that A, s a regular matrix.

Without loss of generality we may assume that
Aozlq otherwise instead of making the left

division of B(s) by A(s) we can make the
division of A3 B(s) by A A(s) i.c.

A7B(s) = AT AG)QEs) +R(s)  (26)

and thus the left quotient and remainder of the
division of B(s) by A(s) will be respectively

Q(s)zd(s) and R(s}:AUﬁ(s) respectively. Then
we can state the relative Bezout theorem.

Theorem 5. If A0=Iq then the left quotient and

remainder of the division of B(s) by A(s) are

respectively :

Qa)=Yys " ey ST Ty (27a)
-1, -2 ]

R(S)=Yp pus  +Ygp.ps" +e-+Y_ (27b)

P PR S8 LR T LE N SRR U

el R, e



where Y; are defined according to the following

recursive way
Y, = B,
min(j—1,m—n)
Y, =B — Lo ALY (29)
i=max (0, ]—n)
Proof. To determine the right remainder we use

the usual division scheme :
= —1
B(s) = A(s)Bys™ © + (B—AB)s™ © +
(BQ—AzBO)quz + e+ By =

m—f—1
]+

= A(s) [Bgs " + (Bi—ABy)s

m~2
[By—A;By — A\[B—A Byl s teoo+ By =

(29)
+ee Y 1+

= A(s) [Ygsm_n + Yism_n_l
-1 -2

} [Ym-n*lsn + Ym-n’?‘sn S Ym]

However det{Ay]#0. Thus A(s) is column (row)

reduced and its ith row degree (n) is greater
than the ith row degree of R(s) which is at most

n—1. Therefore A(s)_lR(s) vanishes at s=m
according to definition 1 which proves the
Theorem. a
Example 3. Let B(s) and A(s) as in Example 1.
Then

10 01
Y0=30=[ ; leBL_AlY(}:{l DJ

00
00
Y, =By—AYy —AY, =

01
00 a
01

B(s)=A(s)=detA(s)}=ps ¥ +p s 4 "+Pan

Thus according to Theorem 4

Q(s)=Y 5+Y,= sl i R(s)=Y,=

Further assuming that

and applying Theorem 5 we have that
R()=Ygoges™ 4 gopeps” S+ +Y 20 (30)
or equivalently

Yj=0 for j=m=n+1, m—n+2,..m (31)
Substituting B; with p-qu and Yj from relations
(28) we have an alternative form of the
generalised Cayley—Hamilton Theorem.
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3. Conclusgions.

The division of two polynomial matrices has
been studied through two different algorithms.
The first algorithm was an extension of the
already known algerithm of Lewis [5| while the
second one was an extension of the general
Bezout theorem presented in Gantmacher [4].
Some interesting applications of the presented
algorithm such as a) the relative Cayley
Hamilton Theorem and b) the expression of the
relative adjoint matrix in terms of the
Tschirnhausen polynomials have also been
presented.
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