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1. INTRODUCTION

Consider the linear, homogeneous, matrix differ-
ential equation :

Alp)B(H) =0 £ 20— W

where 7 := d/dt is the differential operator, A(p)
is an 7 X r non-singular (over R[p]) polynomial
matrix i.e. A(p) € R[p]"*" and 5(t) : (0—,00) —
R"i.e. an r—dimensional vector-valued function.
It is known (Vardulakis, 1991) that (1) exhibits
both smooth and impulsive behavior due the finite
and infinite zeros of A(s) respectively. The prob-
lem of defining an equivalence relation betwen the
smooth and impulsive solution sets of two systems
of the form (1) has been shown (Pugh et.al., 1992)
to be equivalent to the problem of finding an
equivalence transformation betwen the polyno-
mial matrices which describes the two systems.
Actually full equivalence (Hayton et.al., 1988)
is a transformation between polynomial matrices
which preserves both the finite and the infinite
zeros. A geometric interpretation of full equiva-
lence in terms of maps between the smooth and
impulsive solution sets of the systems described
by the equivalent matrices can be found in (Pugh
et.al., 1992).

Consider now a linear, homogeneous, matrix dif-
ference equation :

A(0)B(k) =0 k€ [0,N] (2)

where ¢ denotes the forward shift operator i.e.
oB(k) = B(k+ 1) and B(k) : [0,N] — R". It
is known (Antoniou et.al., 1998) that (2) exhibits
both forward and backward solutions due the fi-
nite and infinite elementary divisors of A(¢) (and
not the infinite zeros). Like in the continuous-
time case we are interested to find out a trans-
formation between square and nonsingular poly-
nomial matrices which preserves both the finite
and infinite elementary divisors. Actually in case
where A(0) = oF — A, then strict equivalence
(Gantmacher, 1959) is the transformation we are
looking for.

The aim of this work is to present a new trans-
formation between polynomial matrices with the
nice property of preserving both the finite and in-
finite elementary divisors. However the proposed
transformation gives only necessary but not suf-
ficient conditions. A matrix pencil equivalent of
a polynomial matrix is given as an implication of
this new transformation.

2. PRELIMINARY RESULTS

Consider the set P(m,m) of (r +m) x (r +m)
polynomial matrices where r > —m.

Definition 1. Consider the polynomial matrix



A(s)=Ao+Ais+---+Ags? € R[s|™*"  (3)

and define as the "dual” of A (s) :

A(s) = AosT + AysT 1 -+ A, € R[s]"*" (4)

Then A(s) is said to have an infinite elementary
divisor of degree ¢ whenever its dual A (s) has a
finite elementary divisor of the form s?. l

The finite elementary divisors of A(s) describe the
finite zero structure of the matrix polynomial, but
the infinite elementary divisors give a complete
description of the total structure at infinity (pole
and zero structure) and not simply that associated
with the zeros (Hayton et.al., 1988),(Vardulakis,
1991).

A necessary and sufficient condition for a polyno-
mial matrix to have no infinite elementary divisors
is given in the following Lemma.

Lemma 1. Consider A(s) defined in (3). A(s) has
no infinite elementary divisors iff

rankply =1
Proof.

(=) If rankpA; = r then rankA(0) = r and
therefore A (s) has no finite elementary divisors
of the form s9.

(=) If A(s) has no infinite elementary divisors
then A (s) has no finite elementary divisors of the
form s¢ and therefore A (s) does not lose rank at
s = 0. Therefore rankp A (0) =r < rankrA, =
r. W

It is easily seen that the proof is independent
of the dimension of A(s) and therefore can be
applied to any polynomial matrix. An important
transformation between polynomial matrices is
given in the sequel.

Definition 2. (Pugh and Shelton, 1978)

Two matrices A;(s), A2(s) € P(m,m) are said
to be extended unimodular equivalent (e.u.e.) if
there exist polynomial matrices M (s), N(s) of
appropriate dimensions, such that

M(s)Ax(s) = Az(s)N(s) (5)

or (M) Ax(0)] [ ) ] =0

where M(s) and As(s) (respectively A;(s) and
N{(s)) are relatively left (respectively right) prime
ie.

Al (S)

() x(e)] 5 | 107

} have full rank Vs € C

(6)
|

Some important properties of this transfornation
are contained in the following statement.

Lemma 2. (Pugh and Shelton, 1978)

(i) E.u.e. is an equivalence relation on P(m,m).

(ii) A1(s), As(s) € P(m,m) are e.u.e. if and only
if they have the same finite elementary divisors. ll

However e.u.e. does not preserves the infinite
elementary divisors as we can see in the following
example :

Ezxample 1. Consider the following e.u.e. transfor-
mation

1 2] [1 s 1s?—s°
0s+1| |0s+1]|0 1

N %
M(s) Ai(s) Az (s) N(s)

Although A;(s), Az(s) have the same finite ele-
mentary divisors i.e.

1 0
Sgl(s)(s) = [0 S+1} :Sgl(s)(s)

they have different infinite elementary divisors i.e.
|10

} “los?
|10

} K

The above example indicates that further restric-
tions must be placed on the compound matrices
(6) in order to ensure that the associated trans-
formation will leave invariant finite and infinite
elementary divisors.

s

St =52
0 s+s°

0 _ Q0
542(5)(8) =5 s 1
0 $2+5s°

3. A NEW MATRIX TRANSFORMATION

A new transformation between polynomial matri-
ces is given in the following definition.

Definition 3. Two matrices A1(s), A2(s) € P(m,m)
are said to be divisor equivalent (d.e.) if there exist
polynomial matrices M (s), N(s) of appropriate
dimensions, such that



where

(1)

) axe)] 5 |0

have no finite nor infinite elementary divisors,

(i)

Aq(s)

416 As)] = alaa(e)] | A | = ataigo)

(9)
where d denotes the degree of the highest coefli-

cient matrix of the certain polynomial matrix i.e.
dlAdo+Ais+---+Ags?=¢q. N

Note that according to Lemma 1 the condition
that the compound matrices defined in (8) have
no infinite elementary divisors, is equivalent to
”the highest coefficient matrix in each compound
matrix” has full row (column) rank”.

An important property of the above transforma-
tion is given by the following

Theorem 3. If A1(s), Aa(s) € P(m,m) are divisor
equivalent then they have the same finite and
infinite elementary divisors.

Proof.

According to the definition of ”divisor equiva-
lence”, A;(s) and Ags(s) are also e.u.e. and thus
have the same finite elementary divisors.

(7) may be rewritten, by setting s = L, as

][]

w
or equivalently by premultiplying and postmulti-
plying the above relation by

LAME) Ax(s)] g wd[—N(s)

respectively we get

denotes the dual matrix. Now since
1(s)

N(s)
d [A1(s)] equation (10) may be rewritten as :

where

d[M(s) Az(s)] = d[Az(s)] and d [il

[ M'(w) As(w)] [ﬁ\(f%)} =0 (11)

The compound matrices in (10) have two kind
of zeros : (i) finite zeros at w = 0 and (ii) fi-
nite zeros at w # 0. First of all [ M(s) Az(s) ]
has no infinite elementary divisors and therefore
its dual [M’(w) flg(w)] has no finite zeros at
w = 0. Secondly there is a connection between the
nonzero eigenvalues of | M (s) As(s)] and its dual
[ M'(w) As(w)] (Vardulakis, 1991) i.e. if so # 0
is an eigenvalues of [M(s) Ag(s)] then w =
50" is an eigenvalue of [ M'(w) Ag(w) ]. However
[M (s) Ag(s)] has no finite nonzero eigenvalues
and therefore [M’(w) flg(w)] has also no finite

nonzero eigenvalues. Therefore [M "(w) flg(w)]
has no zeros at all. Similar results applied for
the second compound matrix [Al (Q,U) } Thus
—N'(w)

(11) is an e.u.e. transformation which preserves,
according to Lemma 1, the finite elementary di-
visors of A (w),flg(w) or otherwise the infinite
elementary divisors of A;(s), A2(s). W

Ezxample 2. Consider the transformation

s+1 0 2 210 10
£ 0 [0 3} =(0 s1 2 s+1
0 -1 5 00s||0 —s
N Aq(s
M(s) 1) As(s) N(s)

I
—
&
o

while

Sfixl(s) r [H | S([AR;) r [H

N(s)

The degree condition is also satisfied and thus
A1(s) and Aa(s) are divisor equivalent. Therefore
they have the same finite and infinite elementary
divisors i.e.

c _ |10 s _|I20
SAl(S)_[O 85 ’SAQ(S)_ 0 85



0 _ 10 . Q0 _ 120
SAl(S)_[O s} ’Sf‘iz(s)_ [0 s}

In the special case of matrix pencils of the same
dimension, strict equivalence and divisor equiva-
lence define the same equivalence class as we can
easily show in the following theorem.

Corollary 4. Let sy — Ay, 8F — Ay € R[s]™*™
with det [SEi — Az] 75 0. Then SE1 — Al, SE2 — Ag
are strict equivalent iff they are divisor equivalent.

Proof. If sF; —A;, sFs— Ay are strict equivalent
then there exists constant, square and nonsingular
matrices M, N € E™*™ guch that :

M [SEl — Al] = [SEQ — Ag] N

Then select sg such that {det [soF; — A;] #0,i=1,2}

and construct the transformation :

[M (s — s0)] [sE1 — A1] = [sF2 — A2] [N (s — s0)]

It is easily seen that the above transformation is
a divisor equivalence transformation.

Suppose that sEq—Aq, sFo— As are divisor equiv-
alent. Then according to Theorem 3.1, sF; — A
and sFEy — As possess the same finite and infi-
nite elementary divisors. Therefore (Gantmacher,
1959) the pencils sy — Ay and sFy — Ag are strict
equivalent. H

An interesting question is if we are able to reduce
a polynomial matrix to a divisor equivalent matrix
pencil ? The answer to this question is given in the
next section.

4. MATRIX PENCIL DIVISOR
EQUIVALENTS OF A POLYNOMIAL
MATRIX.

Consider the polynomial matrix A(s) defined in
(3) and define the following pencil

sl, =L, 0 --- 0 0
0 s, —I,--- 0 0
sE-A=| 1 1o
0 0 0 --- sl s
Ag Ay Ay --- Aq,Q SAq —|—Aq,1

12)

The above pencil has originally been defined in
(Gohberg et.al., 1982) while it was shown in
(Praagman, 1991) and (Antoniou and Vardulakis,
2001) that A(s) and sE — A share the same finite

and infinite elementary divisor structure. In what
follows we shall show that A(s) and sE — A are
divisor equivalent and thus have the same finite
and infinite elementary divisor structure.

Theorem 5. Consider A(s) defined in (3) and sF—
A defined in (12). Then A(s) and sF — A are

divisor equivalent.
Proof. Select a pencil sI,, — J ' such that :

stlr —J A(s)](s) =[4- 0]

i.e. have no common zeros with A(s). Then con-
sider the transformation

(s, —J)
(sl, —J)s

(sI, — J)s? !

0 - rr
o4 - (13
——
M(s)
s, =1, 0 --- 0 0
0 sl, —1.--- 0 0
o 0 o0 --- si,. —1I.
Ag Ay Ay --- Aq,Q SAq—FAq,l
sE—A

—~

i) Consider the compound matrix

[sE—A M(s)] =

sl, -1, 0 --- O 0 0
0 sl, —1.--- 0 0 0
o 0 o0 --- si,. —1I. 0
Ag Ay Ay --- Aq,Q SAq + Aq,1 (SIT — J)

(i-1) We can easily find two greatest order minors

of [sEl—A M(s)] ie.

sl, -1, 0 --- O 0
0 s, —I.--- O 0
Ly(s) = :
0O 0 O si, —1,
Ao Ay Ao - Aq,Q SAq + Aq,1
—I. 0 - 0 0 0
sl, —1I, - 0 0 0
Lo(s)o=| & 0 : :
o 0 --- sI. —1, 0
A As - Aq,Q SAq + Aq,1 (SIT — J)
with

1 Select sg : det[A(s0)] # 0 and define sIr —J = (s—s0)*1.

N(s)



det [L1(s)] = det [A(s)] and det [La(s)] = det [s], — J]

However J is selected such that the greatest com-
mon divisor of det [L;(s)] and det [Lz(s)] to be 1.
Therefore the compound matrix [ sE — A M (s) |
has no finite elementary divisors.

(i-2) Tt is easily seen that the highest degree
coefficient matrix of [ s — A M (s) ] i.e.

,0OO0O---00 O
01I,0---00 O
[ M(0)] = : A
000---,0 O
000--0 A I

has full row rank and therefore according to
Lemma 1 the compound matrix [ sE — A M (s) |
has no infinite elementary divisors.

(i-3) Both sE — A and M(s) are of degree 1 and
therefore d [ s — A M (s)| =1 =d[sE — A].

(ii) Consider the second compound matrix

A(s)
(sl, — J)

(sl, —J)s

[ (s, — J) 5971

(ii-1) We can easily find two greatest order minors
ie.

Q1(s) = A(s) and Qu(s) = s, — J

with

det [Q1(s)] = det [A(s)]
det [Qa(s)] = det [s],. — J]

However J is selected such that the greatest
common divisor of det [Q1(s)] and det [Q2(s)] to
be 1. Therefore the compound matrix Als)
—N(s)
has no finite elementary divisors.

(ii-2) The highest degree coefficient matrix of

[A(S) } Le.

—N(s)

[AT0--01,]"

has full column rank and thus according to
Lemma 1, the compound matrix Afs) has
—N(s)

no infinite elementary divisors.

(ii-3) Note also that

From (i) and (ii) we conclude that A(s) and sE— A
are divisor equivalent. Il

Corollary 6. A(s) and sF — A are divisor equiv-
alent and therefore according to Theorem 3 have
the same finite and infinite elementary divisors. i

Corollary 7. The symmetric transformation be-
tween A(s) and sE — A is :

[— (sl — J) s 2Aq — (sl — J) 89 3 (Ag + Ays) -
— (sl — J) (Ag+ -+ Aq_as? %) (s, —J) s ]

M(s)
s, I, 0 --- 0 0
0 sl. —1.--- 0 0
X : =
o 0 o0 --- si, -1,
Ao Ay Ag -+ Ay sAg+ Ay
SE-A
= A(s)[On(q,l)r (sl — J)]
N(s)

where J is defined in a similar way with the
previous Theorem.

A direct implication of the above Theorem is given
in the following Example.

Ezample 3. Consider the polynomial matrix A(s)
of example 1

a0 =g 41| = o]+ [0 1]+ [3 o)

S—— N~ S~
Ao A Az
Define the pencil
s0-1 0
sy -1 _|10s 0 -1
SE_A'_[AO sA2+A1}_ 10 0 s
01 0 1

Let s = 2 i.e. det [A(2)] = 3 # 0, and define the
matrix

s—2 0
SIQ—J.—|: 0 8_2:|
Then A(s) and sE — A are divisor equivalent and
connected through the following divisor equivalent

transformation :

X



0272 _ _ SIQ —J
[sb——J}A@)_(SE A)[@Ly—J)S}
S———— S———r

M(s) N(s)

or equivalently

0 0
0 0 1 s ]
s—2 0 [084—1}_
0 s—2|—~—"
——— A1(s)
M(s)
s0-1 0 s§—2 0
_0s 0 -1 0 s§—2
100 s (s—2)s 0
010 1 0 (s—2)s
sE—A N(s)

while the symmetry transformation is given by

[_(312—J)A0 (sz—J)S] (sE—A) =

M‘(rs)
= A(S)[OZQ (SIQ — J) ]

N(s)

or equivalently

50 -1
—(s—2) 0 (s—2)s O 0s 0
[ 0 —(s—2) 0 (3—2)3} 100
01 0
M(s)
sE—A
1 s* J[o0s-2 0
_[084—1}[00 0 3—2}
A1(s) N(s)

Note also that

1 0 I3 O
Sg(s)(s): [0 S—I—l} and SscEfA(s) = [S) S—l—l}

and

10
(6= g 0| ana SBoa) = o7 )

5. CONCLUSIONS

A new transformation between square and nonsin-
gular polynomial matrices has been defined. This

new transformation has the property to preserve
both the finite and infinite elementary divisors of
polynomial matrices in contrast to the full equiv-
alent transformation which has the property to
preserve both the finite and infinite zero struc-
ture. This new transformation has many applica-
tions in the study of equivalence between discrete
time representations. However certain questions
arising from the above paper as concerns : a)
if the presented conditions of divisor equivalence
are also sufficient and b) if divisor equivalence
is an equivalence relation ? These questions will
be considered in a further research. Some inter-
esting Maple procedures for the determination
of the matrices M(s), N(s) which satisfies the
relation M (s)A;(s) = Az(s)N(s) under the spe-
cific degree conditions of divisor equivalence has
been produced by my colleague S. Vologiannidis
(svol@math.auth.gr) and is available under re-
quest.
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