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Abstract— In [1] a new family of companion forms asso-
ciated to a regular polynomial matrix has been presented
generalizing similar results presented by M. Fiedler in [2]
where the scalar case was considered. This family of com-
panion forms preserves both the finite and infinite elementary
divisors structure of the original polynomial matrix, thus all
its members can be seen as linearizations of the corresponding
polynomial matrix. In this note we examine its applications
on polynomial matrices with symmetries which appear in a
number of engineering fields.

I. PRELIMINARIES

We consider polynomial matrices of the form

T (s) = Tnsn + Tn−1s
n−1 + ... + T0, (1)

with Ti ∈ Cp×p. A polynomial matrix T (s) is said to be
regular iff detT (s) 6= 0 for almost every s ∈ C. The
associated with T (s) matrix pencil

P (s) = sP1 − P0,

where

P1 =


Tn 0 · · · 0

0 Ip
. . .

...
...

. . . . . . 0
0 · · · 0 Ip

 ,

P0 =


−Tn−1 −Tn−2 · · · −T0

Ip 0 · · · 0
...

. . . . . .
...

0 · · · Ip 0


(2)

is known as the first companion form of T (s). The first
companion form is well known to be a linearization of
the polynomial matrix T (s) (see [5]), that is there exist
unimodular polynomial matrices U(s) and V (s) such that

P (s) = U(s)diag
{
T (s), Ip(n−1)

}
V (s).

An immediate consequence of the above relation is that
the first companion form has the same finite elementary
divisors structure with T (s). However, in [13], [10], this
important property of the first companion form of T (s) has
been shown to hold also for the infinite elementary divisors
structures of P (s) and T (s).

Motivated by the preservation of both finite and infinite
elementary divisors structure, a notion of strict equivalence
between a polynomial matrix and a pencil has been pro-
posed in [13]. According to this definition, a polynomial
matrix is said to be strictly equivalent to a matrix pencil iff
they possess identical finite and infinite elementary divisors
structure, which in the special case where both matrices are
of degree one (i.e. pencils) reduces to the standard definition
of [3].

Similar results hold for the second companion form of
T (s) defined by

P̂ (s) = sP1 − P̂0,

where P0 is defined in (2) and

P̂1 =


−Tn−1 Ip · · · 0

−Tn−2 0
. . .

...
...

...
. . . Ip

−T0 0 · · · 0

 .

It can be easily seen that det T (s) = det P (s) = det P̂ (s),
so the matrix pencils P (s), P̂ (s) are regular iff T (s) is
regular.

The new family of companion forms presented in [1]
can be parametrized by products of elementary constant
matrices, an idea appeared recently in [2] for the scalar
case. Surprisingly, this new family contains apart form
the first and second companion forms, many new ones,
unnoticed in the subject’s bibliography. Companion forms
of polynomial matrices (or even scalar polynomials) are of
particular interest in many research fields as a theoretical
or computational tool. First order representations are in
general easier to manipulate and provide better insight on
the underlying problem. In view of the variety of forms
arising from the proposed family of linearizations, one may
choose particular ones that are better suited for specific
applications (for instance when dealing with self-adjoint
polynomial matrices [4], [5], [9], [6], [7] or the quadratic
eigenvalue problem [12]).

The context is organized as follows: in section II, we
review the main results of [1]. In section III, we present
the application of a particular member of this family of



linearizations to the special case of systems described by
polynomial matrices with certain symmetries. Finally in
section IV, we summarize our results and briefly discuss
subjects for further research and applications.

II. A NEW FAMILY OF COMPANION FORMS

In what follows, R and C denote the fields of real and
complex numbers respectively and Kp×m where K is a field,
stands for the set of p × m matrices with elements in K.
The transpose (resp. conjugate transpose) of a matrix A will
be denoted by A> (resp. A∗), det A is the determinant and
ker A is the right null-space or kernel of the matrix A. A
standard assumption throughout the paper is the regularity
of the polynomial matrix T (s), i.e. det T (s) 6= 0 for almost
every s ∈ C.

Following similar lines with [2] we define the matrices
(notice that the indices are ordered reversely comparing to
those in [2] and [1])

An = diag{Tn, Ip(n−1)}, (3)

Ak =


Ip(n−k−1) 0 · · ·

0 Ck
. . .

...
. . . Ip(k−1)

 , k = 1, 2, . . . , n−1,

(4)
A0 = diag{Ip(n−1),−T0}, (5)

where
Ck =

[
−Tk Ip

Ip 0

]
. (6)

The above defined sequence of matrices Ai, i =
0, 1, 2, . . . , n can be easily shown to provide an easy way
to derive the first and second companion forms of the
polynomial matrix T (s).

Lemma 1: [1]The first and second companion forms of
T (s) are given respectively by

P (s) = sAn −An−1An−2 . . . A0, (7)

P̂ (s) = sAn −A0 . . . An−2An−1. (8)
The following theorem will serve as the main tool for

the construction of the new family of companion forms of
T (s).

Theorem 2: [1]Let P (s) be the first companion form of
a regular polynomial matrix T (s). Then for every possible
permutation (i1, i2, . . . , in) of the n-tuple (0, 2, . . . , n− 1)
the matrix pencil Q(s) = sAn − Ai1Ai2 . . . Ain

is strictly
equivalent to P (s), i.e. there exist non-singular constant
matrices M and N such that

P (s) = MQ(s)N, (9)

where Ai, i = 0, 1, 2, . . . , n are defined in (3), (4) and (5).
The above theorem states that any matrix pencil of the

form Q(s) = sA0 −Ai1Ai2 . . . Ain has identical finite and
infinite elementary divisor structure with T (s). Thus for any
permutation (i1, i2, . . . , in) of the n-tuple (0, 2, . . . , n− 1)
the resulting companion matrices are by transitivity strictly

equivalent amongst each other. Furthermore the companion
forms arising from theorem 2 can be considered to be
strictly equivalent to the polynomial matrix T (s) in the
sense of [13]. Notice, that the members of the new family
of companion forms cannot in general be produced by
permutational similarity transformations of P (s) not even
in the scalar case (see [2]).

In view of the asymmetry in the distribution of Ai’s in the
constant and first order terms of Q(s), it is natural to expect
more freedom in the construction of companion forms. In
this sense the following corollary is an improvement of
theorem 2.

Corollary 3: [1]Let P (s) be the first companion form of
a regular polynomial matrix T (s). For any four ordered sets
of indices Ik = (ik,1, ik,2, . . . , ik,nk

), k = 1, 2, 3, 4 such

that Ii ∩ Ij = ∅ for i 6= j and
4
∪

k=1
Ik = {1, 2, 3, . . . , n− 1}

the matrix pencil

R(s) = sA−1
I1

AnA−1
I2

−AI3A0AI4 ,

is strictly equivalent to P (s), where AIk
=

Aik,1Aik,2 . . . Aik,nk
for Ik 6= ∅ and AIk

= I for
Ik = ∅.

Notice that the inverses of Ak, k = 1, 2, . . . , n− 1 have
a particularly simple form, that is

A−1
k =


Ip(n−k−1) 0 · · ·

0 C−1
k

. . .
...

. . . Ip(k−1)

 ,

with

C−1
k =

[
0 Ip

Ip Tk

]
.

In view of this simple inversion formula, corollary 3
produces a broader class of companion forms than the one
derived from theorem 2, which are strictly equivalent (in
the sense of [13]) to the polynomial matrix T (s).This is
justified by the fact that the ”middle” coefficients of T (s)
can be chosen to appear either on the constant or first-order
term of the companion pencil R(s).

The following example illustrates such a case.
Example 4: Let T (s) = T3s

3 +T2s
2 +T1s+T0. We can

choose to move the coefficients T1, T2 on any term of the
companion matrix R(s). For instance we can have T2 on
the first order term and T1 on the constant term of R(s),
i.e.

R(s) = sA3A
−1
2 −A1A0,

or

R(s) = s

 0 T3 0
I T2 0
0 0 I

−

 I 0 0
0 −T1 −T0

0 I 0

 .



III. APPLICATIONS TO SYSTEMS DESCRIBED BY
POLYNOMIAL MATRICES WITH SYMMETRIES

We now focus on polynomial matrices of the form (1)
where the coefficients are real and either symmetric or
skew symmetric. We shall further assume that the leading
coefficient matrix of T (s) is non-singular, i.e. det(T0) 6=
0.We introduce a linearization of such a polynomial matrix
of particular importance.

Let T (s) be a polynomial matrix of degree n, with
detT0 6= 0. Then the companion form of T (s)

Rs(s) = sA−1
odd −Aeven, (10)

where

Aeven = A0A2 . . . A−1
n , Aodd = A1A3 . . . An−1, for n even

and

Aeven = A0A2 . . . An−1, Aodd = A1A3 . . . A−1
n , for n odd,

is obviously a member of the family of linearizations
introduced in .corollary 3.

It easy to see that the above linearization of T (s) has a
particularly simple form as shown in the following example:

Example 5: We illustrate the form of Rs(s) for n = 4
and n = 5 respectively.
For n = 4

Rs(s) =

s


0 Ip

Ip T3

0 Ip

Ip T1

−


T−1

4

−T2 Ip

Ip 0
−T0


For n = 5

Rs(s) = s


T5

0 Ip

Ip T3

0 Ip

Ip T1

−


−T4 Ip

Ip 0
−T2 Ip

Ip 0
−T0


Obviously, the above linearization has the advantage of

preserving the (skew) symmetric structure of the polynomial
matrix T (s), i.e. the resulting pencil has (skew) symmetric
coefficients as well. This is a desirable feature in many
applications where such polynomial matrices appear. The
fact that any linearization preserves the (possible) special
eigenstructure of the polynomial matrix, in general does
not allow the use of special numerical methods exploiting
the (skew) symmetric structure of the original coefficients.
In the following we present two such cases.

A. Systems with symmetric coefficients

Consider the system described by the differential equation
n∑

i=0

Ti
dix

dti
= Bu

with T>i = Ti.Typical applications of such models, involve
second order, mechanical, vibrational, vibro-acoustics, fluid
mechanics, constrained least-square and signal processing
systems, [12] of the form

Mẍ + Cẋ + Kx = Bu

where the M,C and K are symmetric matrices and possibly
holding certain definiteness properties. The linearization of
the associated polynomial matrix T (s) = s2M + sC + K
in this case is given by (10) as follows

Rs(s) = s

[
0 I
I C

]
−

[
M−1 0

0 −K

]
Obviously, the coefficient matrices of the pencil Rs(s)
are symmetric too. In the special case of second order
systems, there are other symmetry preserving linearizations
known in the literature [12]. However there is not a general
linearization method for matrices of degree more than two,
having this appealing property. For instance, the numerical
solution of vibration problems by the dynamic element
method (example 6, [8]) requires the solution of cubic
eigenvalue problem of the form

(λ3F3 + λ2F2 + λF1 + F0)v = 0

where Fi = F ᵀ
i , i = 0, 1, 2, 3. Our symmetric linearization

in this case is given by (10)

Rs(s) = λ

F3 0 0
0 0 I
0 I F1

−

−F2 I 0
I 0 0
0 0 −F0


B. Systems with alternating coefficients

Consider the polynomial T (s) of the form (1), where now
the coefficients Ti alternate between symmetric and skew
symmetric [8], i.e.

T ᵀ
i = (−1)iTi, for i = 0, 1, 2, ..., n (11)

or
T ᵀ

i = (−1)i+1Ti, for i = 0, 1, 2, ..., n (12)

Again the proposed matrix pencil (10) appears to be suitable
for the linearization of polynomial matrices with alternating
symmetry after a slight sign modification. Define

Pi = diag
{
I(i−1)p,−Ip, I(n−i)p

}
, 0 < i ≤ n

Pi ∈ Rnp×np and

Mi =
bn−i

4 c∏
j=0

P4j+i



1) If (11) holds. Then the pencil L(s) is also a strict
equivalent linearization of T (s) with the first order
term being skew symmetric and the constant one
being symmetric.

a) n even. L(s) = M2Rs(s)M3.
b) n odd. L(s) = M3Rs(s)M4.

2) If (12) holds. Similarly the following linearizations of
T (s) have their first order terms symmetric and the
constant ones skew symmetric.

a) n even. L(s) = M3Rs(s)M4.
b) n odd. L(s) = M2Rs(s)M3.

Higher order systems of differential equations with alter-
nating coefficients are of particular importance, since they
can be used in the modelling of several mechanical systems
and they are strongly related to the Hamiltonian eigenvalue
problem (see examples 1,2 and 3 in [8]).

Example 6: [8]Consider the mechanical system governed
by the differential equation

Mẍ + Cẋ + Kx = Bu

where x and u are state and control variables. The com-
putation of the optimal control u that minimizes the cost
functional

t1∫
t0

(xᵀQ0x + ẋᵀQ1ẋ + uᵀRu) dt

is associated with the eigenvalue problem(
λ2

[
M 0
−Q1 −Mᵀ

]
+ λ

[
C 0
0 Cᵀ

]
+

+
[

K −BR−1Bᵀ

Q0 −Kᵀ

]) [
v
w

]
= 0 (13)

The coefficient matrices are from left to right Hamiltonian,
skew Hamiltonian and again Hamiltonian. A matrix H is
said to be Hamiltonian (skew Hamiltonian) iff (JH)ᵀ =
JH (respectively (JH)ᵀ = −JH) where

J =
[

0 I
−I 0

]
.

Obviously J−1 = Jᵀ = −J . Premultiplying (13) by J , we
obtain the equivalent eigenvalue problem(

λ2

[
Q1 Mᵀ

M 0

]
+ λ

[
0 −Cᵀ

C 0

]
+

+
[
−Q0 Kᵀ

K −BR−1Bᵀ

])[
v
w

]
= 0

where now the coefficient matrices are respectively sym-
metric, skew symmetric and again symmetric. In order to
linearize the above problem using case 1a, we obtain the

equivalent first order matrix pencil

λ


0 0 I 0
0 0 0 I
−I 0 0 Cᵀ

0 −I −C 0

−

−


0 M−1 0 0

M−ᵀ −M−ᵀQ1M
−1 0 0

0 0 −Q0 Kᵀ

0 0 K −BR−1Bᵀ


which has a skew symmetric first order coefficient matrix
and a symmetric constant term. The preservation of the
alternating symmetry of the original higher order problem,
is very important for computational purposes. The spectrum
of the proposed first order pencil has the Hamiltonian struc-
ture, while additionally its coefficients have the desirable
alternating symmetry. A similar approach using a different
linearization and its significance in spectral computations,
has been presented in [8].

IV. CONCLUSIONS

In this paper we present a number of applications of the
results appeared in [1], using a particular member of the
proposed family of linearizations of a regular polynomial
matrix. Throughout the variety of forms arising from this
family, a particular one seems to be of special interest, since
it preserves the symmetric or alternating symmetry structure
of the underlying polynomial matrix. The present note
aims to present only preliminary results regarding this new
family of companion forms, leaving many theoretical and
computational aspects to be the subject of further research.
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