Numerator-Denominator Structures of n-D MFDs
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Abstract—The approach to defining the zero/pole structure {f1,..., fs} is a factor coprime set of polynomials, then
of a n-D rational matrix via the numerator/denominator zero  g|p,

structures of its MFDs is investigated. The possible coprimeness A matrix P(z) over Flz] is called an-D polynomial
types a MFD can possess is resolved, and relationships between .
matrix. Let » denote the rank oP(z) then

the zero structures which arise are derived.
Definition 1: The ** DETERMINANTAL DIVISOR
l. INTRODUCTION di(z) ,i=1,...,r, of P(z) is the g.c.d. of itg*" order mi-
In linear multivariable systems ([7], [1]) the poles andnors, and the zeros af () are thei' DETERMINANTAL
zeros of a rational matrix play a central role, governingZEROS of P(z).
response and transmission properties. These poles and zeroshe simple exampleP(z) = (z1 z3) revealsd;(z) = 1
can be defined in a number of ways, for example via thand so there are no determinantal zeros. Neverthé¢s$
Smith-McMillan form, or via matrix fraction descriptions loses rank fotr; = x5 = 0. A more encompassing definition
(MFDs). Whichever approach is adopted a consistent notids required.
of pole/zero structure is obtained and the theory is well Denote the ideal generated by thex ¢ minors of P(x)
expoused. by 1171 write 1177 = 4,1, Clearly J"! is generated
The counterpart of this analysis in linear multidimensionalby a set of factor coprime polynomials, which may not
(n-D) theory is by contrast more recent and incompletese additionally zero coprime, a distinctive feature 10D
[13] has defined a basic zero structure feD polynomial  (n > 1), and which the exampl®(x) = (z; ) illustrates.
matrices and established connections with physical systenhis leads to ([13], [5]).
properties. [5] has extended this definition to give a more Definition 2: The it* ORDER INVARIANT ZEROS,i =
detailed zero structure and has shown its invariance with . of P(z), are the elements df([i[P])_ The ALGE-
respect to a matrix transformation of importanceifD  BrAIC ORDER ofa V(I[P]) is the positive integer
theory ([3], [4]). [8], [12] have considered the rational matrix !
case and developed pole/zero definitions which have physical n(a) £ r —rank P(a)
interpretation.
This paper considers whether the pole/zero structure ofdd itsi”* GEOMETRIC DEGREEJ; (a) is the number of
n-D rational matrix can be defined via the numerator antimesa occurs inV (11).
denominator matrices in a MFD. Coprimeness splits into That everyi x i minor can be written as a linear combina-
three distinct notions ine-D and brings into question a tion of (i —1) x (i —1) minors has a number of consequences
number of tenets of 1-D theory, for example, the coprimenessimmarised in 1-D by
type of an MFD and its constancy across the left and right ,
handedness of the various MFDs. A number of such issues di(@)|dia(2), =1,
are addressed, and the detail of the numerator/denominajgr,, b additional implications are
structures examined.

,7"—1 (1)

Lemma 2:If P(z) is ap x ¢ matrix then
Il. MATRIX ZERO STRUCTURE

Let F[z] = Flz1,...,z,] denote the polynomial ring over
the field F' in n indeterminates:;. Invariably F' is taken as VI o...D V(I[P])
RorC.If S={fi,...,fs} is a set of polynomials in h . !
Fla], I ={f1,...,fs) = > i_; Flz]fi C Flz| is called the
ideal generated byf1, ..., fs € F[z], or by S. The variety

. : A n. f£. _
defined byl is V(1) = {a = (a1,...,an) € F"; fila) = 6105 simply aghe invariant zeromf P(x) in line with [13].

0i=1,... ’.s}' an?}? < V(“Q }S zizgro OJI'fS Its said to be Corollary 1: If a is an invariant zero oP(z) of algebraic
a z€ro coprime sein case () = and afactor coprime ordern(a), andd;(a),i = 1,...,r, are its geometric degrees
setin case its elements have no nontrivial common factor.

Lemma 1:Let g,h € F[zy,...,z,] and suppose thaj
divides f;h (written g|f;h) for i = 1,...,s, where S = 0=141(a) =" =6r_n(a)
< 67'—n(a)+1(a) S te S 67“(&)

I,[P]Q--~QI£P]

Clearly if a € C is ani'" invariant zero ofP(z) then it is
also an(i + 1)*" invariant zero and will always be art”"
invariant zero. Because of this we refer to tH& invariant

then
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Corollary 2: If d;(z) denotes thé!" determinantal divisor 1,...,n 3 a polynomiali;(x) independent of the variable

of P(x) thend,|ds---|d, and so x; and polynomial matrices(;(z), Y;(z) such that
(dr) € -+ C{dy) T(z)Xi(x) + U(2)Yi(z) = ¥i(z) I, )
S th ti I tri i itt
V((d)) D - D V((di)) uppose the x ¢ rational matrixG(z) is written
Example 1:For G(z) = Di(2) ' Ni(z) = Na(2)Da(2)™ . (10)
2
P(z,y,2) = ﬁ) 02 my] The coprimeness type of MFDs can only be guaranteed to
=T be factor coprime, but may exceptionally be minor coprime
(Pl s 99 ) or, more so, zero coprime. The question arises as whether
Iy = (22,2727, —xyz") (2)  the coprimeness type of, say, a left MFD is always the same.
I{P] = (22, 2y, 2, 2%) 3) Theorem 1 ([6], [91): All left (resp. right) coprime MFDs
of the samen-D rational matrix have the same type of
Clearly I> C I; in line with Lemma 2. Note that coprimeness.
. _ —1 _ —1 H
J[P] (22,12, —yz) (4) Proof: Assgme thaiG(z) = D; J_\fl = D, .NQ, with
i ) Dy, N, left coprime andD,, N, left minor coprime. From
Ji = (@ wy, w2, 2%) (5)  Lemma 4 fori = 1,...,n 3 polynomial matricesX;, Y; and

Now, for example yz € J[ ] but clearly —yz ¢ J[ ] polynomialsy; such that

Therefore [ ¢ JIF1. Also zy € JI but 2y ¢ JI7), fo DyX; + NoYi = 1,
the same reason. Thuép] J[P]. This illustrates the non-
existence of a definite inclusion between the ideﬁl@] of
P(x). D1 X; + N,Y; = ;D D;!

With N, = D, Dy N, polynomial this gives

1. n-D MFD TYPES Now ¢;D; Dy " is polynomial, and the factor coprimeness
The basic form of coprimeness is that achieved by caf the polynomialsy; determines thaD, D, ' = E, say, is
celling common factors. Im-D the more special kinds of polynomial. ThusD; = ED, andN; = EN,. Now Dy, Ny
coprimeness possess the nicer algebraic characterisatiots at least left factor coprime and &bis unimodular, thus
Throughout analogous statements hold for right coprimeness. 1 1
Definition 3 ([10]): Two p x ¢,p x | n-D polynomial DiXE™ + MYE™ =il
matricesT'(z), U(x) with p < ¢ + 1, are said to be from which it follows thatD;, N; are left minor coprime.
(i) LEFT ZERO COPRIME (written Izc) if Hence ifG(z) has one left minor coprime MFD then all left
_ n coprime MFDs are of this type. By using the Bezout relation
(T(@) Ul)=p Yzel ©6) of Lemma 3, the same proof establishes th&k(if) has one
(i) LEFT MINOR COPRIME (Imc) in case the x p left zero coprime MFD then all left coprime MFDs are of

minors of ((T'(z) U(x)) are factor coprime this type. It thus follows that ifG(z) has one left factor
(i) LEFT FACTOR COPRIME (Ifc) in case the existence coprime MFD then all left coprime MFDs will be of this
of a polynomial factorisation type. [ |

As regards the comparative coprimeness of left and right
(T() U@)=Q@) (T'@) U'@) ) urps we have P g
implies Q(z) is unimodular. Theorem 2:If a rational matrix has one zero coprime
In the following we generally adhere to the convention oMFD then all of its coprime MFDs, both left and right, are
referring to coprimeness in its most specific form. Thus fozero coprime.
example minor coprime refers to a matrix pair which are not ~ Proof: Let G = D~'N be left zero coprime. By

additionally zero coprime. . Lemma 33 polynomial matrices such th DN s
Lemma 3 ([10], [5], [11]): The p x ¢,p x I (with p < , , X Y
g + 1) n-D polynomial matricesl’(z), U(x) are lzc iff one unimodular, and hencg polynomial matrices such that
of the following equivalent conditions holds: D N\ (X -N\ _ (I 0 1)
(i) 3 polynomial matricesX (z),Y (x) such that X Y)\Y D ) \0 I
T(z)X(z) +U(2)Y (z) =1, (8) The 2,2 block equation
(i) (T(x) U(x)) possesses no invariant zeros. —XN'+YD' =1 (12)
(i) (T(x ) U(zx)) can be extended to a unimodular matrix
T U indicates thatD’, N’ are right zero coprime. To show that
X'y’ D’ is invertible, supposé a vectoryn such thatD’n = 0.
Lemma 4 ([10]): Thep x ¢,p x I (with p < g+ 1) n-D  Fom (11)
polynomial matricesI’(z),U(x) are Imc iff for eachi = —DN'+ND' =0



and soDN'n = 0 which, sinceD is invertible, implies Cauchy-Binet Theorem and the relatidh, = UD; then
N'n = 0. Post-multiplying (12) by, thus gives; = 0. Hence gives
D' is invertible and saV’ D'~ ! is a right zero coprime MFD

U1,ell | i1y I1,eolie
of G. Thus by Theorem 1, all right coprime MFDs 6f are |D2j1 ----- jk| - Z ‘Ull,.,.,lk, ||D1j1 ,,,,, jk'
zero coprime. m 1<l <<l <p
The above results can be summarised in the following tableom which it is clear that[,LDz] C IIEDl]_ In a similar way
Right Zero  Minor Factor the relationD; = U~1D, yields I." 2 117" sinceU is
ZLgrto 3 A 7 unimodular, and so
Minor A 3 3 I}LDz] _ IILDl]
Factor 3 3 3
he relationN, = UN; yields I][CNz] _ I}[CNl]_ -

The possibilities indicate that zero coprimeness of a MF
of ann-D rational matrixG(x) is a property ofG(z) rather
than a property of the specific MFD. Note that+D, since
minor and factor coprimeness coincide, the coprimeness tyﬁ
of an MFD is entirely a property of/(x).

is thus seen that left (resp. right) MFDs of the rational
matrix G (z) have identical numerator/denominator structures
rovided they are at least Imc (rmc). It remains to determine
Bw these structures correspond between the different left
and right MFDs. The following result is required.

IV. THE INTERNAL STRUCTURE OFn-D MFDs Lemma 7:1f G(z) is ap x g rational matrix withp > ¢

With the establishment of the various combinations o?nd coprime factorisations

coprimeness types for MFDs @¥(z), the concern is now Dy (z) ' Ny (x) = Na(z)Dy(z)~* (13)
as to the nature of the structural information which th?P
MFDs carry through the ideals determined by the minors o 1 N1 nrs , S
their numerator and denominator matrices. An obvious initial Dy ()" Ni(w) = Ny(2) Dy() ™" (14)
question that arises is whether all left (resp. right) MFDgire factorisations of the square rational matéik(z) =
of G(x) carry the same information, and the first result iG(x),0,,-,) of the same coprimenesstypes as the corre-
discouraging. sponding factorisations in (13) where
Lemma 5 ([2)): If G(x) has a left (resp. n_ght) factqr Dl =Dy NI = (N1, 0p—y)
coprime MFD then it possesses left (resp. right) coprime D 0 (15)
MFDs which are not related by a unimodular factor. D, = 02 I N} = (N2,0p—4)
Clearly it follows from this that if G(xz) has say a lIfc
MFD then any other left MFD will not necessarily carry the
same structure as determined by the ideals of its numerafdr
and denominator. As regards other factorisation types tf(@QT NQT)T_ It thus follows that any factorisation in
following is a crucial result. (14) is zero (resp. minor) coprime iff the corresponding
Lemma 6:G(x) has a left (resp. right) minor coprime factorisation in (13) is zero (resp. minor) coprime. For factor
MFD iff all left (resp. right) coprime MFDs of=(z) differ  coprimeness it is clear that any common right factor of
only by a unimodular factor. Do, N, will give rise to a common right factor ab’, NJ.

Proof: If G(z) has a Imc MFD, then all left MFDs For the converse suppose thHa, N; have a common right
of G(x) are minor coprime by Theorem 1. It also followsfactor ). Then

from the proof of this Theorem that iD;'N; = Dy ' N,

. P—dq . .

Proof: It is clear that the non-zero high order minors
T

for example,(D’QT NQT) are identical to those of

1 1
are two such left MFDs the®,D;* = U is a unimodular 13)2 ? B g}} g,lf Qi1 Q12
matrix. HenceDy = UD;. Also Ny = D2D1_1N1 =UDNy, N. 0 - N%,I N%,Q le Q22
2 11 12

as required.
Conversely suppose that all left MFDs G{z) are related The 2,2 block equation is
by a unimodular factor. If{G(xz) has a left factor coprime % "
MyFD then Lemma 5 gives asn)immediate contradicti[())r- I = D5 Q12+ D5Q20
Theorem 3:1f the n-D rational matrix G(z) has a left which indicates thatDy,, D3, are zlc. Thus3 polynomial
minor (resp. right) coprime MFD, then all left (resp. rightymatricesX,Y such that
MFDs of G(x) give rise to identical numerator and denom- X v
inator ideal structure. Z = (D” D )
Proof: SupposeG(z) has a left minor coprime MFD, ) e
then all left MFDs ofG(z) are minor coprime by Theorem IS unimodular. Now

1. If Dy*N; = D;'N, are two such left MFDs then by 70— 1 Qs
Lemma 6 (D3, N3) = U(D;, N;) for some unimodular 0 1
matrix U.

. and so

For any matrix@) let Qjﬁj‘_'gjk denote thek x & submatrix

7= (1 @)y
formed from rowsiy, ..., 7, and columnsjy,..., k. The 1 0 1



is unimodular and whereJ = WX - ZY.

0 Consider the following equation formed from (22)
Z1Q = < - )
1
/ O E’Ll ..... 1k D2J1 nnnnn in X
is a right factor of(N ) Thus3 polynomial matrices such Ny D, —No, 0 Y
2
that b o R A B (23)
2 UL geeeyl 01 yensih
;) (BB (e ) (v
N o) \N, M 0 .
T genes Tk i H h
The 1,1 and 3,1 block equations then give wherel < k <[, and £ is that matrix whosé, s*
, element is 1 ifs = 4;, and zero otherwise.
(D2) _ (Dp) 2 Take determinants in (23), and use the Cauchy-Binet
Ny N1y theorem to expand the left hand side to give
T
Thus (D’QT NQT) is factor right coprime iff Lk e _—
Z| 7’)’1L1,7 7m[+k| |B 7l«}]{) - | - |N - ]l]i (24)

(D™ NQT)T is factor right coprime. A simpler proof
establishes that(D] Nj) is factor left coprime iff
(Dy Ny) is factor left coprime

It is clear from the above result that the ideals generatqgp

The form of A indicates that any minor ofl of the type
curring in the left hand side of (24) for whidh, . .., it}

not a subset ofmy, ..., mx} is zero. Thus all minors
bB;] the i Xch mmoLs cf)éNl’Nl c(:jow;ﬁde fofrvz ?\fl Th of A which occur in the left hand side of (24) contain the
wherer is the rank ofG(x), as do those oV, N;. ose columns{iy, ..., }. Such a factor is then expressible via

of Dy, D} coincide for eachi = 1,...,p. The ideals of

Laplace expansion in terms of products of minors /of
D,, D} correspond as follows P P P 1o

and D,. The smallest minor ofV; occuring in this Laplace
I[DQ] _ LED317 i =0,...,q—1 (16) expansion is of ordek. Thus|Nz | e ““ | is expressible as a
linear combination of minors 0N1 of orderk and greater.

and for anyg < i <p—1, [[D = = (1). A similar result, and Since any minor can be expanded in terms of lower order

correspondence of ideals, holds for> p. minors, it follows that‘Ngzl”m’_lk | can be written as a linear
As seen above there are various combinations of coprimeombination of thet order minors ofN;. Thus
ness types for_ the left and right MFDs 6f(x). The Izc/rzc ILNQ] c I,[le], k=1,.. .1 (25)
combination gives
Theorem 4:If the p x ¢ rational matrixG(z), of rankr, The above argument may be repeated, with
possesses the zlc and zrc factorisations wo 7z Dy Ej.
Dy (z) "' Ny (z) = Na(z)Da(x) " . (17) Ny Dtk J ANy 0
Then A B (26)
FEACLN 1 S | (18) :C ml“) -----
and 0 N 7llj
[I[f_’g = [(E?j], i=0,...h—1 (19) replacing (23), to establishes the reverse inclusions. Hence
[N1] _ g[N2]
whereh = min(p, ¢). For anyi > h, Iz[ﬂ] = (1) in case Lot =L
pfz>OorI[D2}:<1>incaseqfizo. fork=1,...,L
Proof: By Lemma 7 expand~(x) to ensure it isl x An entirely analogous argument, with the roles/df, N,
[ wherel = max(p, q). The associated correspondence oénd D,, D, interchanged, completes the proof. ]
ideals is detailed in (16). Note that (17) implies Corollary 3: Under the conditions of Theorem 4
N1Dy = D1 N, (20) v =va™hfori=o0,1,....r—1  (27)

From the zero coprimeness requiremesnitgolynomial ma- and

trices X, Y, W, Z such that
vrPh =va”hfori=0,1,....h -1  (28)

NMX+ DY =1 (1) _ . _ ‘
WDy + ZNy = I whllfo?r any.z > h, V(Ip_i) = in casep —i > 0, and
_ V(I,75) =0 in caseq —i > 0.
From (20) and (21) it follows that Suppose the idedl generated by théx i minors of then-D

W -z Dy X\ (I, J 99 matrix P is written asdiJi[P].Althoughwe have seen that no
Ny Dy -Ny, YY) \0 I (22) particular relation of inclusion holds between the ideéil’%]



there is something that can be said about the correspondiwherel < k < [, and E*»~* is that matrix whose, s'"
ideals of the numerator and denominator matrices of the zeetement is 1 ifs = i;, and zero otherwise.

coprime MFDs of a rational matrix. Repeating the argument in the proof of Theorem 4 reveals
Corollary 4. Under the conditions of Theorem 4 that ¢, (2)P| N2}, o ’“| can be written as a linear combi-
gl _ [Na] nation of thek order minors of N; from which it follows
;f—' ’"—"N that d[N1 |oP, d[Nz] Since {¢1,...,¢,} is factor coprime
V(N = v Lemma 1 shows thatl"")|a{?!, Contlnumg as in the proof
wherei =0,...,r — 1, and of Theorem 4 it is concluded thai = dg\b modulo
gD _ J[DQ] a multiplicative constant, with a correspondlng statement
p—i holding for Dy, Ds. [ |
V(Jl[ﬂ]) = V(Jﬁﬁ]) Corollary 5: Under the conditions of Theorem 5
wherei =0,...,h— 1. For anyi > h, J, Dl] = (1) (and so <d1[~JX1i]> — <d[TJE]>
V(JIEZ]) = ()) in casep —i > 0, while J,E’zﬁ] = (1) (and so v<<d£ﬁ1}>) _ v<<dEX2,J>)
V(J,23) = 0) in caseq —i > 0. o _ _
The' above results reveal the commonality of numeravherei =0,...,r—1. A similar statement holds in relation

tor/denominator zero structures of any rational matrix whickP Dy, Ds..

possesses a zero coprime MFD. The other cases are consideorollary 6: SupposeG(z) possesses the Imc and rfc
ered next. factorisations

Theorem 5:If the p x ¢ rational matrixG(xz) possesses

—1 _ —1
the Imc and rmc factorisations Di(@)™ N1 (@) = Na() D)™ - (36)
Dy (z) ' Ny (x) = Ny(z)Dy(2) 7t . (29) Let dg] denote thei*" determinantal divisor of the indicated
matrix. Then

then N N

dN =™l =0 -1 (30) dMhatNel =0, -1 (37)
and

(D) _ Da) _ and
d,— =dy—;, 1=0,...,h =1 (31) dLDl]\dql, i=0,...,h—1 (38)

where h = min(p, q). For anyi > h, dZ[JD_li] = 1 in case

— mi : [Di] _
p—i>0or dgpzj —1incaseq—i > 0. where h, = min(p, ¢). For anyi > h, d,”%/ = 1 in case

Proof: By Lemma 7 expand:(z) to ensure it isl x p—1=00r d[PQ] 1in caseq —i > 0.
| wherel = maz(p,q). The associated correspondence of  Proof: The Imc of Dy, N1 may be exploited as in
ideals is detailed in (16). (29) implies that Theorem 5 to give the result. The lack of a Bezout iden-
tity for factor coprimeness precludes the reverse divisibility

Ni(z)Dy(z) = Di(z)Na() (32)  statements, and so equality cannot be concluded.
From the minor coprimeness requirementspolynomial Example 2:
matricesX,,,,Y,,, W.., Z,, such that (2540.5)° )
Ni X+ DiYn = b ()1, (33) G(z) = (“2?2(26’*)2 B (22“)5%3*4‘5))
(21+3)(23+2 5) (Zl+3)(23+45)

WmD2 + ZmN2 = ’l/]m(x)jq

71 .
where form = 1,...,n the polynomialsg,, (z), ¥m(z) do has the ric MFD [2]N> D, with

not contain the variable:,,. Thus each se{¢i,...,¢,}, N, ((z3 —0.5)(z5 + 0.5) 0 )

{¢1,...,¢y,} is factor coprime. 0 05 0.5
From (32) and (33) it follows that e (23 = 0.5)(z3 +0.5)
11 12

(% —gm) ( D2 );m) _ (%(Ox)fq , J(mﬂ P2 = <d21 d22>
- m m\ L

! ! 2 %) 4) di1 = (Zg =+ 2)(2’3 + 2.5)7 dig = —(21 + 3)(2’3 + 25)

Consider then the following equation formed from (34), d21 = —(22 +2)(23 +0.5)(23 +4.5)

which is analogous to (23), das = (21 + 3)(23 + 0.5)2 (23 + 4.5)
( 0 E““) ( Dy . Xm) It also has the left minor coprime MFD; ! N; with
J1sees Jk
NS T b _ (22 +25) —(z21+3)(25 + 25)
A B (35) ! 2(z9 + 2) (21 4 3)(323 + 11.5)

_(Nag Y Ny = (2= 05)(+05) 0
0 5(2+0.5) 3



It can then be seen for example that

™M=y aM =1

BN = (25— 0.5)(23 + 0.5)) = I}
dN = (25 — 0.5) (23 + 0.5) = di™!
][Nz] (23 — 0.5)%(25 + 0.5)2)

d¥l = (23 — 0.5)%(23 + 0.5)?

from which the relationships determined in Corollary 6 may
be verified. The relationship between the determinantal divi-
sors of the denominator matrices may be similarly verified.

V. CONCLUSIONS

This paper has adopted the definition of the zero structure
of a polynomial matrix ([13], [5]) and considered its possible
role in the definition of the zero/pole stucture ofrnaD
rational matrixG(z) via its MFDs. The coprimeness type
of the MFD has been seen to be unique to its handedness,
while this coprimeness type is only seen to be uniqué te)
when it possesses a zero coprime MFD. In this case there is
unified agreement of the numerator/denominator structure,
whichever MFD is used. In the other cases, of minor or
factor coprime MFDs, there appears only partial agreement
between these structures as has been described. The results
provide interesting comparison with the 1-D case where
there is consistent agreement across all such structures, and
highlights the complexities inherent D.
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