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Abstract— The approach to defining the zero/pole structure
of a n-D rational matrix via the numerator/denominator zero
structures of its MFDs is investigated. The possible coprimeness
types a MFD can possess is resolved, and relationships between
the zero structures which arise are derived.

I. I NTRODUCTION

In linear multivariable systems ([7], [1]) the poles and
zeros of a rational matrix play a central role, governing
response and transmission properties. These poles and zeros
can be defined in a number of ways, for example via the
Smith-McMillan form, or via matrix fraction descriptions
(MFDs). Whichever approach is adopted a consistent notion
of pole/zero structure is obtained and the theory is well
expoused.

The counterpart of this analysis in linear multidimensional
(n-D) theory is by contrast more recent and incomplete.
[13] has defined a basic zero structure forn-D polynomial
matrices and established connections with physical system
properties. [5] has extended this definition to give a more
detailed zero structure and has shown its invariance with
respect to a matrix transformation of importance inn-D
theory ([3], [4]). [8], [12] have considered the rational matrix
case and developed pole/zero definitions which have physical
interpretation.

This paper considers whether the pole/zero structure of a
n-D rational matrix can be defined via the numerator and
denominator matrices in a MFD. Coprimeness splits into
three distinct notions inn-D and brings into question a
number of tenets of 1-D theory, for example, the coprimeness
type of an MFD and its constancy across the left and right
handedness of the various MFDs. A number of such issues
are addressed, and the detail of the numerator/denominator
structures examined.

II. M ATRIX ZERO STRUCTURE

LetF [x] = F [x1, . . . , xn] denote the polynomial ring over
the fieldF in n indeterminatesxi. InvariablyF is taken as
R or C. If S = {f1, . . . , fs} is a set of polynomials in
F [x], I = 〈f1, . . . , fs〉 =

∑s
i=1 F [x]fi ⊆ F [x] is called the

ideal generated byf1, . . . , fs ∈ F [x], or by S. The variety
defined byI is V (I) , {a = (a1, . . . , an) ∈ Fn; fi(a) =
0, i = 1, . . . , s}, anda ∈ V (I) is azero of I. S is said to be
a zero coprime setin caseV (I) = ∅ and afactor coprime
set in case its elements have no nontrivial common factor.

Lemma 1:Let g, h ∈ F [x1, . . . , xn] and suppose thatg
divides fih (written g|fih) for i = 1, . . . , s, whereS =
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{f1, . . . , fs} is a factor coprime set of polynomials, then
g|h.

A matrix P (x) over F [x] is called an-D polynomial
matrix. Let r denote the rank ofP (x) then

Definition 1: The ith DETERMINANTAL DIVISOR
di(x) , i = 1, . . . , r, of P (x) is the g.c.d. of itsith order mi-
nors, and the zeros ofdi(x) are theith DETERMINANTAL
ZEROS ofP (x).

The simple exampleP (x) = (x1 x2) revealsd1(x) = 1
and so there are no determinantal zeros. NeverthelessP (x)
loses rank forx1 = x2 = 0. A more encompassing definition
is required.

Denote the ideal generated by thei × i minors ofP (x)
by I

[P ]
i . Write I

[P ]
i = diJ

[P ]
i . Clearly J [P ]

i is generated
by a set of factor coprime polynomials, which may not
be additionally zero coprime, a distinctive feature ofn-D
(n > 1), and which the exampleP (x) = (x1 x2) illustrates.
This leads to ([13], [5]).

Definition 2: The ith ORDER INVARIANT ZEROS,i =
1, . . . , r, of P (x), are the elements ofV (I [P ]

i ). The ALGE-
BRAIC ORDER ofa ∈ V (I [P ]

i ) is the positive integer

n(a) , r − rankP (a)

and itsith GEOMETRIC DEGREE,δi(a) is the number of
timesa occurs inV (I [P ]

i ).
That everyi× i minor can be written as a linear combina-

tion of (i−1)×(i−1) minors has a number of consequences
summarised in 1-D by

di(x)|di+1(x), i = 1, . . . , r − 1 (1)

In n-D additional implications are
Lemma 2: If P (x) is a p× q matrix then

I [P ]
r ⊆ · · · ⊆ I

[P ]
1

V (I [P ]
r ) ⊇ · · · ⊇ V (I [P ]

1 )
Clearly if a ∈ C is an ith invariant zero ofP (x) then it is
also an(i + 1)th invariant zero and will always be anrth

invariant zero. Because of this we refer to therth invariant
zeros simply asthe invariant zerosof P (x) in line with [13].

Corollary 1: If a is an invariant zero ofP (x) of algebraic
ordern(a), andδi(a), i = 1, . . . , r, are its geometric degrees
then

0 = δ1(a) = · · · = δr−n(a)(a)
< δr−n(a)+1(a) ≤ · · · ≤ δr(a)

if r > n(a), andδ0(a) , 0 if r = n(a).



Corollary 2: If di(x) denotes theith determinantal divisor
of P (x) thend1|d2 · · · |dr and so

〈dr〉 ⊆ · · · ⊆ 〈d1〉

V (〈dr〉) ⊇ · · · ⊇ V (〈d1〉)
Example 1:For

P (x, y, z) =
[
x2 0 xy
0 z2 xz

]

I
[P ]
2 = 〈x3z, x2z2,−xyz2〉 (2)

I
[P ]
1 = 〈x2, xy, xz, z2〉 (3)

Clearly I2 ⊂ I1 in line with Lemma 2. Note that

J
[P ]
2 = 〈x2, xz,−yz〉 (4)

J
[P ]
1 = 〈x2, xy, xz, z2〉 (5)

Now, for example−yz ∈ J
[P ]
2 , but clearly−yz /∈ J

[P ]
1 .

ThereforeJ [P ]
2 * J

[P ]
1 . Also xy ∈ J

[P ]
1 but xy /∈ J

[P ]
2 , for

the same reason. ThusJ [P ]
2 + J

[P ]
1 . This illustrates the non-

existence of a definite inclusion between the idealsJ
[P ]
i of

P (x).

III. n-D MFD TYPES

The basic form of coprimeness is that achieved by can-
celling common factors. Inn-D the more special kinds of
coprimeness possess the nicer algebraic characterisations.
Throughout analogous statements hold for right coprimeness.

Definition 3 ([10]): Two p × q, p × l n-D polynomial
matricesT (x), U(x) with p ≤ q + l, are said to be

(i) LEFT ZERO COPRIME (written lzc) if(
T (x) U(x)

)
= p ,∀ x ∈ Cn. (6)

(ii) LEFT MINOR COPRIME (lmc) in case thep × p
minors of

(
(T (x) U(x)

)
are factor coprime

(iii) LEFT FACTOR COPRIME (lfc) in case the existence
of a polynomial factorisation(

(T (x) U(x)
)

= Q(x)
(
(T ′(x) U ′(x)

)
(7)

impliesQ(x) is unimodular.
In the following we generally adhere to the convention of
referring to coprimeness in its most specific form. Thus for
example minor coprime refers to a matrix pair which are not
additionally zero coprime.

Lemma 3 ([10], [5], [11]): The p × q, p × l (with p ≤
q + l) n-D polynomial matricesT (x), U(x) are lzc iff one
of the following equivalent conditions holds:

(i) ∃ polynomial matricesX(x), Y (x) such that

T (x)X(x) + U(x)Y (x) = Ip (8)

(ii)
(
T (x) U(x)

)
possesses no invariant zeros.

(iii) (T (x) U(x)) can be extended to a unimodular matrix(
T U
X ′ Y ′

)
Lemma 4 ([10]): The p × q, p × l (with p ≤ q + l) n-D

polynomial matricesT (x), U(x) are lmc iff for eachi =

1, . . . , n ∃ a polynomialψi(x) independent of the variable
xi and polynomial matricesXi(x), Yi(x) such that

T (x)Xi(x) + U(x)Yi(x) = ψi(x)Ip (9)
Suppose thep× q rational matrixG(x) is written

G(x) = D1(x)−1N1(x) = N2(x)D2(x)−1 . (10)

The coprimeness type of MFDs can only be guaranteed to
be factor coprime, but may exceptionally be minor coprime
or, more so, zero coprime. The question arises as whether
the coprimeness type of, say, a left MFD is always the same.

Theorem 1 ([6], [9]): All left (resp. right) coprime MFDs
of the samen-D rational matrix have the same type of
coprimeness.

Proof: Assume thatG(x) = D−1
1 N1 = D−1

2 N2, with
D1, N1 left coprime andD2, N2 left minor coprime. From
Lemma 4 fori = 1, . . . , n ∃ polynomial matricesXi, Yi and
polynomialsψi such that

D2Xi +N2Yi = ψiIp

With N2 = D2D
−1
1 N1 polynomial this gives

D1Xi +N1Yi = ψiD1D
−1
2

Now ψiD1D
−1
2 is polynomial, and the factor coprimeness

of the polynomialsψi determines thatD1D
−1
2 = E, say, is

polynomial. ThusD1 = ED2 andN1 = EN2. NowD1, N1

are at least left factor coprime and soE is unimodular, thus

D1XE
−1 +N1Y E

−1 = ψiIp

from which it follows thatD1, N1 are left minor coprime.
Hence ifG(x) has one left minor coprime MFD then all left
coprime MFDs are of this type. By using the Bezout relation
of Lemma 3, the same proof establishes that ifG(x) has one
left zero coprime MFD then all left coprime MFDs are of
this type. It thus follows that ifG(x) has one left factor
coprime MFD then all left coprime MFDs will be of this
type.

As regards the comparative coprimeness of left and right
MFDs we have

Theorem 2:If a rational matrix has one zero coprime
MFD then all of its coprime MFDs, both left and right, are
zero coprime.

Proof: Let G = D−1N be left zero coprime. By

Lemma 3 ∃ polynomial matrices such that

(
D N
X Y

)
is

unimodular, and hence∃ polynomial matrices such that(
D N
X Y

)(
X ′ −N ′

Y ′ D′

)
=
(
I 0
0 I

)
(11)

The 2,2 block equation

−XN ′ + Y D′ = I (12)

indicates thatD′, N ′ are right zero coprime. To show that
D′ is invertible, suppose∃ a vectorη such thatD′η = 0.
Fom (11)

−DN ′ +ND′ = 0



and soDN ′η = 0 which, sinceD is invertible, implies
N ′η = 0. Post-multiplying (12) byη thus givesη = 0. Hence
D′ is invertible and soN ′D′−1 is a right zero coprime MFD
of G. Thus by Theorem 1, all right coprime MFDs ofG are
zero coprime.

The above results can be summarised in the following table

Right
Left Zero Minor Factor

Zero ∃ @ @
Minor @ ∃ ∃
Factor @ ∃ ∃

The possibilities indicate that zero coprimeness of a MFD
of ann-D rational matrixG(x) is a property ofG(x) rather
than a property of the specific MFD. Note that in2-D, since
minor and factor coprimeness coincide, the coprimeness type
of an MFD is entirely a property ofG(x).

IV. T HE INTERNAL STRUCTURE OFn-D MFDS

With the establishment of the various combinations of
coprimeness types for MFDs ofG(x), the concern is now
as to the nature of the structural information which the
MFDs carry through the ideals determined by the minors of
their numerator and denominator matrices. An obvious initial
question that arises is whether all left (resp. right) MFDs
of G(x) carry the same information, and the first result is
discouraging.

Lemma 5 ([2]): If G(x) has a left (resp. right) factor
coprime MFD then it possesses left (resp. right) coprime
MFDs which are not related by a unimodular factor.
Clearly it follows from this that ifG(x) has say a lfc
MFD then any other left MFD will not necessarily carry the
same structure as determined by the ideals of its numerator
and denominator. As regards other factorisation types the
following is a crucial result.

Lemma 6:G(x) has a left (resp. right) minor coprime
MFD iff all left (resp. right) coprime MFDs ofG(x) differ
only by a unimodular factor.

Proof: If G(x) has a lmc MFD, then all left MFDs
of G(x) are minor coprime by Theorem 1. It also follows
from the proof of this Theorem that ifD−1

1 N1 = D−1
2 N2

are two such left MFDs thenD2D
−1
1 = U is a unimodular

matrix. HenceD2 = UD1. Also N2 = D2D
−1
1 N1 = UN1,

as required.
Conversely suppose that all left MFDs ofG(x) are related

by a unimodular factor. IfG(x) has a left factor coprime
MFD then Lemma 5 gives an immediate contradiction.

Theorem 3:If the n-D rational matrixG(x) has a left
minor (resp. right) coprime MFD, then all left (resp. right)
MFDs of G(x) give rise to identical numerator and denom-
inator ideal structure.

Proof: SupposeG(x) has a left minor coprime MFD,
then all left MFDs ofG(x) are minor coprime by Theorem
1. If D−1

1 N1 = D−1
2 N2 are two such left MFDs then by

Lemma 6(D2, N2) = U(D1, N1) for some unimodular
matrix U .

For any matrixQ let Qi1,...,ik

j1,...,jk
denote thek×k submatrix

formed from rowsi1, . . . , ik and columnsj1, . . . , jk. The

Cauchy-Binet Theorem and the relationD2 = UD1 then
gives

|D2
i1,...,ik

j1,...,jk
| =

∑
1≤l1≤···≤lk≤p

|U i1,...,ik

l1,...,lk
||D1

l1,...,lk
j1,...,jk

|

from which it is clear thatI [D2]
k ⊆ I

[D1]
k . In a similar way

the relationD1 = U−1D2 yields I [D2]
k ⊇ I

[D1]
k sinceU is

unimodular, and so

I
[D2]
k = I

[D1]
k

The relationN2 = UN1 yields I [N2]
k = I

[N1]
k .

It is thus seen that left (resp. right) MFDs of the rational
matrixG(x) have identical numerator/denominator structures
provided they are at least lmc (rmc). It remains to determine
how these structures correspond between the different left
and right MFDs. The following result is required.

Lemma 7: If G(x) is a p × q rational matrix withp ≥ q
and coprime factorisations

D1(x)−1N1(x) = N2(x)D2(x)−1 (13)

then
D′

1(x)
−1N ′

1(x) = N ′
2(x)D

′
2(x)

−1 (14)

are factorisations of the square rational matrixG′(x) =
(G(x), 0p,p−q) of the same coprimenesstypes as the corre-
sponding factorisations in (13) where

D′
1 = D1 N ′

1 = (N1, 0p,p−q)

D′
2 =

(
D2 0
0 Ip−q

)
N ′

2 = (N2, 0p,p−q)
(15)

Proof: It is clear that the non-zero high order minors

of, for example,
(
D′

2
T

N ′
2
T
)T

are identical to those of(
D2

T N2
T
)T

. It thus follows that any factorisation in
(14) is zero (resp. minor) coprime iff the corresponding
factorisation in (13) is zero (resp. minor) coprime. For factor
coprimeness it is clear that any common right factor of
D2, N2 will give rise to a common right factor ofD′

2, N
′
2.

For the converse suppose thatD′
2, N

′
2 have a common right

factorQ. ThenD2 0
0 I
N2 0

 =

D′′
11 D′′

12

D′′
21 D′′

22

N ′′
11 N ′′

12

(Q11 Q12

Q21 Q22

)
The 2,2 block equation is

I = D′′
21Q12 +D′′

22Q22

which indicates thatD′′
21, D

′′
22 are zlc. Thus∃ polynomial

matricesX,Y such that

Z =
(
X Y
D′′

21 D′′
22

)
is unimodular. Now

ZQ =
(
Q′

11 Q′
12

0 I

)
and so

Z1 =
(
I −Q′

12

0 I

)
Z



is unimodular and

Z1Q =
(
Q′

11 0
0 I

)
is a right factor of

(
D′

2

N ′
2

)
. Thus∃ polynomial matrices such

that D2 0
0 I
N2 0

 =

D′
11 D′

12

D′
21 D′

22

N ′
11 N ′

12

(Q′
11 0
0 I

)
The 1,1 and 3,1 block equations then give(

D2

N2

)
=
(
D′

11

N ′
11

)
Q′

11

Thus
(
D′

2
T

N ′
2
T
)T

is factor right coprime iff(
D2

T N2
T
)T

is factor right coprime. A simpler proof
establishes that

(
D′

1 N ′
1

)
is factor left coprime iff(

D1 N1

)
is factor left coprime

It is clear from the above result that the ideals generated
by the i × i minors of N1, N

′
1 coincide for i = 1, . . . , r

wherer is the rank ofG(x), as do those ofN2, N
′
2. Those

of D1, D
′
1 coincide for eachi = 1, . . . , p. The ideals of

D2, D
′
2 correspond as follows

I
[D′

2]
p−i = I

[D2]
q−i , i = 0, . . . , q − 1 (16)

and for anyq ≤ i ≤ p−1, I [D′
2]

p−i = 〈1〉. A similar result, and
correspondence of ideals, holds forq > p.

As seen above there are various combinations of coprime-
ness types for the left and right MFDs ofG(x). The lzc/rzc
combination gives

Theorem 4:If the p× q rational matrixG(x), of rank r,
possesses the zlc and zrc factorisations

D1(x)−1N1(x) = N2(x)D2(x)−1 . (17)

Then
I
[N1]
r−i = I

[N2]
r−i , i = 0, . . . , r − 1 (18)

and
I
[D1]
p−i = I

[D2]
q−i , i = 0, . . . , h− 1 (19)

whereh = min(p, q). For any i ≥ h, I [D1]
p−i = 〈1〉 in case

p− i ≥ 0 or I [D2]
q−i = 〈1〉 in caseq − i ≥ 0.

Proof: By Lemma 7 expandG(x) to ensure it isl ×
l where l = max(p, q). The associated correspondence of
ideals is detailed in (16). Note that (17) implies

N1D2 = D1N2 (20)

From the zero coprimeness requirements∃ polynomial ma-
tricesX,Y,W , Z such that

N1X +D1Y = Il (21)

WD2 + ZN2 = Il

From (20) and (21) it follows that(
W −Z
N1 D1

)(
D2 X
−N2 Y

)
=
(
Il J
0 Il

)
(22)

whereJ = WX − ZY .
Consider the following equation formed from (22)

(
0 Ei1,...,ik

N1 D1

)
︸ ︷︷ ︸

A

(
D2j1,...,jk

X

−N2j1,...,jk
Y

)
︸ ︷︷ ︸

B

=
(
N2

i1,...,ik

j1,...,jk
Y i1,...,ik

0 Il

) (23)

where1 ≤ k ≤ l, andEi1,...,ik is that matrix whoset, sth

element is 1 ifs = it, and zero otherwise.
Take determinants in (23), and use the Cauchy-Binet

theorem to expand the left hand side to give

∑
m

|A1,...,l+k
m1,...,ml+k

| |Bm1,...,ml+k

1,...,l+k | = |N2
i1,...,ik

j1,...,jk
| (24)

The form ofA indicates that any minor ofA of the type
occurring in the left hand side of (24) for which{i1, . . . , ik}
is not a subset of{m1, . . . ,ml+k} is zero. Thus all minors
of A which occur in the left hand side of (24) contain the
columns{i1, . . . , ik}. Such a factor is then expressible via
Laplace expansion in terms of products of minors ofN1

andD1. The smallest minor ofN1 occuring in this Laplace
expansion is of orderk. Thus|N2

i1,...,ik

j1,...,jk
| is expressible as a

linear combination of minors ofN1 of orderk and greater.
Since any minor can be expanded in terms of lower order
minors, it follows that|N2

i1,...,ik

j1,...,jk
| can be written as a linear

combination of thek order minors ofN1. Thus

I
[N2]
k ⊂ I

[N1]
k , k = 1, . . . , l (25)

The above argument may be repeated, with(
W −Z

N i1,...,ik

1 Di1,...,ik

1

)
︸ ︷︷ ︸

A

(
D2 Ej1,...,jk

−N2 0

)
︸ ︷︷ ︸

B

=
(
I Wj1,...,kk

0 N1
i1,...,ik

j1,...,jk

) (26)

replacing (23), to establishes the reverse inclusions. Hence

I
[N1]
k = I

[N2]
k

for k = 1, . . . , l.
An entirely analogous argument, with the roles ofN1, N2

andD1, D2 interchanged, completes the proof.
Corollary 3: Under the conditions of Theorem 4

V (I [N1]
r−i ) = V (I [N2]

r−i ) for i = 0, 1, . . . , r − 1 (27)

and

V (I [D1]
p−i ) = V (I [D2]

q−i ) for i = 0, 1, . . . , h− 1 (28)

while for any i ≥ h, V (I [D1]
p−i ) = ∅ in casep − i ≥ 0, and

V (I [D2]
q−i ) = ∅ in caseq − i ≥ 0.

Suppose the idealIi generated by thei×i minors of then-D
matrixP is written asdiJ

[P ]
i . Although we have seen that no

particular relation of inclusion holds between the idealsJ
[P ]
i



there is something that can be said about the corresponding
ideals of the numerator and denominator matrices of the zero
coprime MFDs of a rational matrix.

Corollary 4: Under the conditions of Theorem 4

J
[N1]
r−i = J

[N2]
r−i

V (J [N1]
r−i ) = V (J [N2]

r−i )

wherei = 0, . . . , r − 1, and

J
[D1]
p−i = J

[D2]
q−i

V (J [D1]
p−i ) = V (J [D2]

q−i )

wherei = 0, . . . , h− 1. For anyi ≥ h, J [D1]
p−i = 〈1〉 (and so

V (J [D1]
p−i ) = ∅) in casep− i ≥ 0, while J [D2]

q−i = 〈1〉 (and so

V (J [D2]
q−i ) = ∅) in caseq − i ≥ 0.

The above results reveal the commonality of numera-
tor/denominator zero structures of any rational matrix which
possesses a zero coprime MFD. The other cases are consid-
ered next.

Theorem 5:If the p × q rational matrixG(x) possesses
the lmc and rmc factorisations

D1(x)−1N1(x) = N2(x)D2(x)−1 . (29)

then
d
[N1]
r−i = d

[N2]
r−i , i = 0, . . . , r − 1 (30)

and
d
[D1]
p−i = d

[D2]
q−i , i = 0, . . . , h− 1 (31)

where h = min(p, q). For any i ≥ h, d[D1]
p−i = 1 in case

p− i ≥ 0 or d[P2]
q−i = 1 in caseq − i ≥ 0.

Proof: By Lemma 7 expandG(x) to ensure it isl ×
l where l = max(p, q). The associated correspondence of
ideals is detailed in (16). (29) implies that

N1(x)D2(x) = D1(x)N2(x) (32)

From the minor coprimeness requirements∃ polynomial
matricesXm, Ym,Wm, Zm such that

N1Xm +D1Ym = φm(x)Ip (33)

WmD2 + ZmN2 = ψm(x)Iq

where form = 1, . . . , n the polynomialsφm(x), ψm(x) do
not contain the variablexm. Thus each set{φ1, . . . , φn},
{ψ1, . . . , ψn} is factor coprime.

From (32) and (33) it follows that(
Wm −Zm

N1 D1

)(
D2 Xm

−N2 Ym

)
=
(
ψm(x)Iq Jm

0 φm(x)Ip

)
(34)

Consider then the following equation formed from (34),
which is analogous to (23),

(
0 Ei1,...,ik

N1 D1

)
︸ ︷︷ ︸

A

(
D2j1,...,jk

Xm

−N2j1,...,jk
Ym

)
︸ ︷︷ ︸

B

=
(
N2

i1,...,ik

j1,...,jk
Y i1,...,ik

m

0 φm(x)Ip

) (35)

where1 ≤ k ≤ l, andEi1,...,ik is that matrix whoset, sth

element is 1 ifs = it, and zero otherwise.
Repeating the argument in the proof of Theorem 4 reveals

that φm(x)p|N2
i1,...,ik

j1,...,jk
| can be written as a linear combi-

nation of thek order minors ofN1 from which it follows
that d[N1]

k |φp
md

[N2]
k . Since {φ1, . . . , φn} is factor coprime

Lemma 1 shows thatd[N1]
k |d[N2]

k . Continuing as in the proof
of Theorem 4 it is concluded thatd[N1]

k = d
[N2]
k modulo

a multiplicative constant, with a corresponding statement
holding forD1, D2.

Corollary 5: Under the conditions of Theorem 5

〈d[N1]
r−i 〉 = 〈d[N2]

r−i 〉
V (〈d[N1]

r−i 〉) = V (〈d[N2]
r−i 〉)

wherei = 0, . . . , r−1. A similar statement holds in relation
to D1, D2..

Corollary 6: SupposeG(x) possesses the lmc and rfc
factorisations

D1(x)−1N1(x) = N2(x)D2(x)−1 . (36)

Let d[·]
i denote theith determinantal divisor of the indicated

matrix. Then

d
[N1]
r−i |d

[N2]
r−i , i = 0, . . . , r − 1 (37)

and

d
[D1]
p−i |d

[D2]
q−i , i = 0, . . . , h− 1 (38)

where h = min(p, q). For any i ≥ h, d[D1]
p−i = 1 in case

p− i ≥ 0 or d[P2]
q−i = 1 in caseq − i ≥ 0.

Proof: The lmc of D1, N1 may be exploited as in
Theorem 5 to give the result. The lack of a Bezout iden-
tity for factor coprimeness precludes the reverse divisibility
statements, and so equality cannot be concluded.

Example 2:

G(x) =

(
(z3+0.5)2

(z2+2)(z3+2.5)
1

(z2+2)(z3+4.5)
(z3+0.5)

(z1+3)(z3+2.5)
(1

(z1+3)(z3+4.5)

)

has the rfc MFD [2]N2D
−1
2 with

N2 =
(

(z3 − 0.5)(z3 + 0.5) 0
0 (z3 − 0.5)(z3 + 0.5)

)
D2 =

(
d11 d12

d21 d22

)
d11 = (z2 + 2)(z3 + 2.5), d12 = −(z1 + 3)(z3 + 2.5)
d21 = −(z2 + 2)(z3 + 0.5)(z3 + 4.5)

d22 = (z1 + 3)(z3 + 0.5)2(z3 + 4.5)

It also has the left minor coprime MFDD−1
1 N1 with

D1 =
(

(z2 + 2)(z3 + 2.5) −(z1 + 3)(z3 + 2.5)
2(z2 + 2) (z1 + 3)(3z3 + 11.5)

)
N1 =

(
(z3 − 0.5)(z3 + 0.5) 0

5(z3 + 0.5) 3

)



It can then be seen for example that

I
[N1]
1 = 〈1〉; d[N1]

1 = 1

I
[N1]
2 = 〈(z3 − 0.5)(z3 + 0.5)〉 = I

[N2]
1

d
[N1]
2 = (z3 − 0.5)(z3 + 0.5) = d

[N2]
1

I
[N2]
2 = 〈(z3 − 0.5)2(z3 + 0.5)2〉
d
[N2]
2 = (z3 − 0.5)2(z3 + 0.5)2

from which the relationships determined in Corollary 6 may
be verified. The relationship between the determinantal divi-
sors of the denominator matrices may be similarly verified.

V. CONCLUSIONS

This paper has adopted the definition of the zero structure
of a polynomial matrix ([13], [5]) and considered its possible
role in the definition of the zero/pole stucture of an-D
rational matrixG(x) via its MFDs. The coprimeness type
of the MFD has been seen to be unique to its handedness,
while this coprimeness type is only seen to be unique toG(x)
when it possesses a zero coprime MFD. In this case there is
unified agreement of the numerator/denominator structure,
whichever MFD is used. In the other cases, of minor or
factor coprime MFDs, there appears only partial agreement
between these structures as has been described. The results
provide interesting comparison with the 1-D case where
there is consistent agreement across all such structures, and
highlights the complexities inherent inn-D.

REFERENCES

[1] Kailath, T. (1980).Linear systems. Prentice-Hall.
[2] Lin, Z. (1988). On matrix fraction descriptions of multivariable linear

n-D systems,IEEE Trans CAS, 35, 105- 111.
[3] Pugh, A.C., S.J. McInerney, M.S. Boudellioua, D.S. Johnson and

G.E. Hayton (1998). A transformation for 2-D linear systems and a
generalisation of a theorem of Rosenbrock,Int. J. Control, 71, 491-
503.

[4] Pugh, A.C., S.J. McInerney and E.M.O. El-Nabrawy (2004a). Equiv-
alence and reduction of 2-D systems,to be published.

[5] Pugh, A.C., S.J. McInerney and E.M.O. El-Nabrawy (2004b). Zero
structures ofn-D systems,to be published.

[6] Pugh, A.C.. Johnson, D.S. and Hayton, G.E. (1993). 2-D MFD struc-
ture theorems and n-D implications,European Control Conference
(ECC’93), 1499-1505.

[7] Rosenbrock, H.H. (1970).State space and multivariable theory.
Nelson-Wiley, London.

[8] Wood, J., U. Oberst, E. Rogers and D.H. Owens (2000). A behavioural
approach to the pole structure of 1-D andn-D linear systems,SIAM
J. Control Optim., 38, 627-661.

[9] Wood, J., Rogers E. and Owens D.H. (1998). A formal theory of
matrix copimeness,Math Control Signals & Syst., 11, 40-78.

[10] Youla, D.C. and G. Gnavi (1979). Notes onn-dimensional systems,
IEEE Trans CAS, 26, 105-111.

[11] Youla, D.C. and P.F. Pickel (1984). The Quillen-Suslin Theorem and
structure ofn-D elementary polynomial matrices,IEEE Trans Cicuits
& Systems, CAS-31, 513-517.

[12] Zaris, P., J. Wood and E. Rogers (2001). Controllable and uncontrol-
lable poles and zeros ofn-D systems,Mathematics of Control, Signals
and Systems, 14, 281-298.

[13] Zerz, E. (1996). Primeness of multivariate polynomial matrices,Sys-
tems & Control Letters, 29, 139-145.


