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Abstract—It is well known that descriptor systems or gen-
eralized state-space systems are the natural framework for
the study of physical, electrical mechanical, interconnected,
economical and social systems. Although a number of software
packages has been developed for state-space systems, which
is can be seen as special case of descriptor systems, there
are only few for descriptor systems. In this paper we present
an efficient and reliable Mathematica software package for
descriptor systems that can be used both for teaching and
research in the field of control theory. The proposed package
is fully compatible with the Control Systems Professional Suite

of Wolfram Research Inc. and is intended to be an add-on
for the Control Systems Professional Suite in the near future.
This package has been created in collaboration with Wolfram
Research Inc. and Zenon S.A. under a grant from the General
Secreteriat for Research and Technology of Greece.

I. INTRODUCTION

We consider descriptor (or otherwise called extended

state space or singular or generalized state space) systems

representations, described by a set of linear and/or algebraic

equations of the form :

Eẋ (t) = Ax (t) +Bu (t) (1)

y (t) = Cx (t) +Du (t)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈
Rp×m. Descriptor representations have important advantages

over state space systems such as

• State-space representations are a particular case of

descriptor representations, i.e. E = In.
• Even in case where the matrix E is invertible and

the above representation can be transformed to the

following state-space representation

ẋ (t) = E−1Ax (t) +E−1Bu (t)

y (t) = Cx (t) +Du (t)

it is often desirable to avoid the inversion of E since it is

sensitive to numerical errors, especially when the matrix

E has large dimension and/or the condition number of

E is high.

• Descriptor representations, in contrast to state-space

systems can accommodate algebraic constraints.

• The interconnection of state-space systems leads very

often to descriptor representations.
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• Descriptor representations can succesfully model impul-

sive behavior which occurs in the real world and it is

usually neglected by state space models (e.g. switching

phenomena).

• In contrast to state-space techniques that introduce

”artificial” variables, descriptor representations use as

variables only the natural quantities describing the sys-

tem.

Descriptor representations are the natural framework in

engineering systems (power systems, electrical networks,

aerospace engineering and chemical processes), social eco-

nomic systems, network analysis, biological systems, time-

series analysis, system modeling and so on (see [5], [9], [10]

and the references within). Non-regular descriptor equations

play also a very important role in the study of the discrete

Riccatti equation, where the associated Extended Hamilto-

nian Pencil (EHP) is involved [1], [2].

During the recent years a number of software packages,

as like as, Scilab [14], Slicot [16], Control Systems Toolbox

8.0.1 of Matlab [11], has been developed intended for

systems and control theory computations. Most of them

incorporate a collection of functions for state-space and

transfer function objects, while only a few of them, like

the Polynomial Toolbox (Polyx) for Matlab [13] and Slicot

[16], can handle descriptor objects and their functionality is

mainly based on numerical methods. Even in these pack-

ages the functionality is very limited compared to existing

implementations for state-space systems.

Wolfram Research has recently released the Control Sys-

tem Professional (CSP) Suite package as an add-on package

for Mathematica [4]. CSP Suite is a very powerful tool

for the analysis, design and simulation of linear MIMO

(multi-input, multi-output) systems as well as SISO (single-

input, single-output) systems in both time and frequency

domains. It includes both symbolic and and state-of-the-art

numerical algorithms for the study of state-space systems.

Additionally, it provides new tools for modeling, analysis

and design of linear control systems described by polynomial

matrix equations or by matrices with rational polynomial

elements. Although, descriptor representations can easily be

cosidered as first order polynomial matrix equations and

studied using the existing functionality of the CSP Suite,

there is no descriptor object (like the one for state-space

representations) and of course no functionality for analysis

and synthesis problems has been implemented.

In this paper we present a new Mathematica package,

called Descriptor Systems Package (DSP). DSP actually

extends the functionality of the CSP Suite in order to handle



descriptor systems. It can handle descriptor representations

both numerically and symbolically since it uses the existing

functions of CSP Suite.

II. THE DESCRIPTOR SYSTEMS PACKAGE

In this section we describe in detail the main features of

DSP. A great deal of effort has been put into developing rou-

tines that integrate seamlessly with the existing programming

model of the CSP Suite, while the algorithms implemented

have been based on state-of-the-art numerical and symbolic

methodologies found in the literature.

A. Linear Model Descriptions and Manipulations

Following the CSP methodology we have introduced a

new object called DescriptorStateSpace. For exam-

ple consider the circuit shown bellow
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R L

CI (t )

which can described by the following algebraic and differ-

ential equations

VL (t) = L
dI (t)

dt
dVC (t)

dt
=

1

C
I (t)

VR (t) = RI (t)
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or in descriptor form
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This model can easily be defined by the new object as follows

First we call the package :

In[1]:= <<DescriptorControlSystems̀

Then we define the matrices E,A,B,C and denote the

descriptor state space system by dss
In[2]:= e= 88L, 0,0, 0<, 80,0, 1,0<, 80, 0,0, 0<, 80, 0,0, 0<<;

a= 980, 1,0, 0<, 9
1

C
, 0,0, 0=, 8−R, 0,0, 1<, 80,1,1, 1<=;

b= 880<, 80<, 80<, 8−1<<;
c= 880, 0,1, 0<<;
dss:= DescriptorStateSpace@e,a, b,cD

The traditional form of dss is given by :

In[7]:= TraditionalForm@dssD

Out[7]//TraditionalForm=

i

k

jjjjjjjjjjjjjjjjjjjj

L 0 0 0 0 1 0 0 0

0 0 1 0
1

C
0 0 0 0

0 0 0 0 -R 0 0 1 0

0 0 0 0 0 1 1 1 -1

0 0 1 0 0

y

{

zzzzzzzzzzzzzzzzzzzz
•

�

or in equation form

In[8]:= EquationForm@dss,
StateVariables→ 8"I", VL, VC, VR<,

InputVariables→ 8VS<D

Out[8]//EquationForm=

i

k

jjjjjjjjjjj

L 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

y

{

zzzzzzzzzzz
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 H VS L

� = H 0 0 1 0 L 
i

k

jjjjjjjjjjj

I

VL
VC
VR

y

{

zzzzzzzzzzz

where now the coefficient matrix on the left hand side

of the first equation is singular. Descriptor objects can now

be transformed to and from other CSP objects by using the

existing algorithms of the CSP Suite (both numerical and

symbolic) and algorithms described in [5], [17] and [7].

Descriptor State Space

State Space

Transfer Function
Sys tem Matrix

Right or Left MFD

For example we can find the transfer function (matrix) of

the above model :

In[9]:= tf= TransferFunction@dssD

Out[9]=
i
k
jj

1

C � HR+ L �L + 1

y
{
zz
�

and then find a minimal realization of this



In[10]:= ss= MinimalRealization@tfD

PoleZeroCancel::nzpm :  No common pole-zero pairsfound.

Out[10]=

i

k

jjjjjjjjjjjjjjjj

0 1 0

-
1

C L
-
R

L
1

1

C L
0 0

y

{

zzzzzzzzzzzzzzzz
•

�

We can convert this state-space object to a descriptor

object:

In[11]:= dsm = DescriptorStateSpace@ssD

Out[11]=

i

k

jjjjjjjjjjjjjjjj

1 0 0 1 0

0 1 -
1

C L
-
R

L
1

1

C L
0 0

y

{

zzzzzzzzzzzzzzzz
•

�

Apart from the transformation between different CSP ob-

jects, there are algorithms to transform a descriptor represen-

tation to canonical forms, like the Weierstrass canonical form

or the Kalman controllable/observable form (if it exists). If

for example we have that R = 1, L = C = 1/10 in the

previous example, then we have that the Weierstrass form of

the descriptor system dss is given by
In[12]:= WeierstrassCanonicalForm@

dssê. 8R→ 1,L→ 1ê10,C→ 1ê10<D êê N

Out[12]=

i

k

jjjjjjjjjjjjjjj

1. 0. 0. 0. -5. -8.66025 0. 0. -0.143438

0. 1. 0. 0. 8.66025 -5. 0. 0. 0.250104

0. 0. 0. 0. 0. 0. 1. 0. -1.

0. 0. 0. 0. 0. 0. 0. 1. 0.

-34.7417 -19.9248 0. 0. 0

y

{

zzzzzzzzzzzzzzz
•

�

Additionaly, we can discretize a continuous time descriptor

system by using known discretization methods [15] like the

forward or the backward rectangular rule.

B. System analysis

Based on [10], we have developed new functions for the

exact computation of the state-space and output response of

descriptor systems. However, when the symbolic solution is

either impossible or just too time consuming then a simula-

tion of the state and output responses can be considered.

For example, we can compute the state-space impulse

response of the system dss described above

In[15]:= xd =

Chop@StateResponse@dssê. 8R→ 1,C→ 0.1,L→ 0.1<,

DiracDelta@tD,tDD

Out[15]= 9‰-5. t H5.cosH8.66025 tL -2.88675sinH8.66025 tLL,
-5.‰-5. t cosH8.66025 tL+ 1.dHtL -2.88675‰-5. t sinH8.66025 tL,
5.7735‰-5. t sinH8.66025 tL,
5.‰-5. t cosH8.66025 tL -2.88675‰-5. t sinH8.66025 tL=

and in the sequel plot the entries of the state vector

In[16]:= Plot@Evaluate@xdD, 8t,0,1<,
PlotStyle→ 8RGBColor@0,1,0D,RGBColor@1,0,0D,
RGBColor@0,0,1D,RGBColor@1,0,1D<,

PlotRange−> AllD
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We can also simulate the output response of the system

dss for a square wave input as follows
In[40]:= square@t_D:= Sign@Sin@2πtDD

SimulationPlot@
dssê.8R→ 10,C→ 0.001,L→ 0.002<,square@tD,
8t,0,2<D

0.5 1 1.5 2

-1

-0.5

0.5

1

The previously simulated response can be compared to the

output response of the discretized system

In[22]:= yt= OutputResponse@
ddsbê.8R→ 10,C→ 0.001,L→ 0.002,

T→ 0.05<,square@tD,8t,2<D;

MultipleListPlot@yt,PlotJoined→ TrueD

10 20 30 40

-1

-0.5

0.5

1

Functions for testing system properties of a descriptor

representation like controllability and observability have

been developed following the theory in [12], which uses

the standard form of the pencil avoiding more complex

approaches like the ones in [3]. Thus in case where the matrix

s0E −A is invertible for some s0 ∈ R, we premultiple the

matrices E,A,B by (s0E −A)
−1

and we get three new

matrices

Ẽ = (s0E −A)
−1E, Ã = (s0E −A)

−1A

B̃ = (s0E −A)
−1B

where now the new matrices E,A are in standard form i.e.

s0 × Ẽ + (−1) × Ã = In (therefore Ẽ, Ã commute). Then

according to [12], we construct the controllability matrix

RS =
(
Ãn−1B ẼÃn−2B · · · Ẽn−1B

)

and the descriptor system is strongly reachable iff the con-

trollability matrix RS has full row rank. Note that in case



where the matrix E = In (state-space), then we have the

known controllability matrix for state-space systems. Note

that the controllability matrix RS has full rank iff the matrix(
sE − tA B

)
has full rank for all (s, t) �= (0, 0) [12] i.e.

for s = 1, t = 0 we have that rankR
(
E B

)
= n and

for s ∈ C, t = 1 we have that rankR
(
sE −A B

)
= n.

For example the controllability matrix of the descriptor

representation dss given above is

In[24]:= ControllabilityMatrix@
dssê. 8R→ 1,C→ 0.1,L→ 0.1<D

Out[24]=

i

k

jjjjjjjjjjj

-0.00030295 0.00919523 -0.0616572 -0.30295

0.000919523 -0.00616572 -0.030295 -0.0804774

-0.000616572 -0.0030295 0.0919523 -0.616572

-0.00030295 0.00919523 -0.0616572 -0.30295

y

{

zzzzzzzzzzz

In[25]:= Controllable@dssD

Out[25]= False

In a similar way we work for observability, since these

two notions are dual to each other.
In[26]:= ObservabilityMatrix@dssê. 8R→ 1,C→ 0.1,L→ 0.1<D

Out[26]=

i

k

jjjjjjjjjjj

-0.000616572 -0.0000919523 -0.000616572 0.000616572

-0.0030295 0.000616572 -0.0030295 0.0030295

0.0919523 0.0030295 0.0919523 -0.0919523

-0.616572 -0.0919523 -0.616572 0.616572

y

{

zzzzzzzzzzz

In[27]:= Observable@dssD

Out[27]= False

DSP provides the tools needed to construct a composite

system based on a given system topology and descriptions of

the blocks. We have extended the functions of the CSP Suite

in order to perform elementary interconnections between

descriptor representations. Thus in case for example we have

(before the DSP) a system with proper transfer function and

its equivalent state space model

In[28]:= tf= TransferFunctionAs,
s

s+1
E

Out[28]= J
�

�+1
N
�

In[29]:= ss= StateSpace@tfD

Out[29]=
i
k
jj-1 1

-1 1

y
{
zz
•

�

by making the following output feedback interconnection

In[30]:= FeedbackConnect@ss,PositiveD

Inverse::sing :  Matrix H0 L issingular. More…

Out[30]= FeedbackConnect
i
k
jjik
jj-1 1

-1 1

y
{
zz
•

�

, Positive
y
{
zz

results into a singular system that cannot be modeled as a

state space system. However doing the same interconnection

using the equivalent descriptor state space system of the

original transfer function

In[31]:= FeedbackConnect@
DescriptorStateSpace@tfD,PositiveD

Out[31]=

i

k

jjjjjj

0 0 0 -1 1

0 1 1 -2 1

1 -1 0

y

{

zzzzzz
•

�

In[32]:= TransferFunction@%D

Out[32]= H � L�

gives a descriptor system with singular E and an (equiv-

alent) non-proper transfer function.

C. Synthesis and design techniques

The first problem that we solved was the pole assignment

problem i.e to find the state feedback u (t) = −Kx (t)+v (t)
that forces the poles of the descriptor system (1), that is

the k = rankR(E) finite eigenvalues of matrix sE − A, to
assume the new positions λ1, λ2, ..., λk. We have solved

this problem by using two methods : a) by using the gener-

alized Ackermann formula [6] for single-input-single-output

descriptor systems, and b) by solving an equivalent state

space problem using techniques described in ([5], pp.83)

and thus using the existing CSP robust Kautsky-Nichols-Van

Dooren (KNVD) algorithm [8]. Thus, the functions that are

used in CSP Suite for pole assignment, were generalized to

descriptor state space systems as well.

For example consider the following siso-descriptor system
In[33]:= dsb= DescriptorStateSpace@880,0,0<, 80,1,1<, 81,0,0<<,

DiagonalMatrix@81,2,1<D, 881<, 80<, 80<<, 880,1,0<<, 880<<D;
EquationForm@dsbD

Out[34]//EquationForm=

i

k

jjjjjj

0 0 0

0 1 1

1 0 0

y

{

zzzzzz �
°
=

i

k

jjjjjj

1 0 0

0 2 0

0 0 1

y

{

zzzzzz � +

i

k

jjjjjj

1

0

0

y

{

zzzzzz �

�= H 0 1 0 L � + H0 L �

where the Smith form of the polynomial matrix sE − A
is given by

In[35]:= SmithForm@dsb@@1DD∗s−dsb@@2DD, sD

Out[35]=

i

k

jjjjjj

1 0 0

0 1 0

0 0 s- 2

y

{

zzzzzz

and therefore the system has one finite pole at s = 2 and

two poles at infinity. The system dsb is controllable
In[36]:= Controllable@dsbD

Out[36]= True

and therefore using a generalized version of the Acker-

mann’s formula given in [6] we can change rankRE = 2
finite poles of the system. In what follows, we find the state

feedback u (t) = −Kx (t) + v (t) that change the poles of

the above system {2,∞,∞} to {p1, p2,∞}
In[37]:= k= StateFeedbackGains@dsb, 8p1, p2<,

Method→ AckermannDêê Simplify

Out[37]= I p1 p2

2
+ 1 1

4
Hp1- 2L Hp2- 2L 1

4
Hp1Hp2- 2L- 2p2L M

Note that the closed loop system

Eẋ (t) = (A−BK)x (t) +Bv (t)

has the desired poles
In[38]:= dscl= StateFeedbackConnect@dsb,kDêê Simplify;

EquationForm@dsclD
Out[39]//EquationForm=

i

k

jjjjjj

0 0 0

0 1 1

1 0 0

y

{

zzzzzz �
°
=

i

k

jjjjjjjjjjj

-
p1p2

2
-
1

4
Hp1- 2L Hp2-2L 1

4
H2p2- p1Hp2- 2LL

0 2 0

0 0 1

y

{

zzzzzzzzzzz
 � +

i

k

jjjjjj

1

0

0

y

{

zzzzzz �

� = H0 1 0 L � + H 0 L �

since the Smith form of sE −A is given by



In[40]:= SmithForm@dscl@@1DD∗s−dscl@@2DD, sD

Out[40]=

i

k

jjjjjj

1 0 0

0 1 0

0 0 Hp1- sL Hp2- sL

y

{

zzzzzz

The same functions are also working for multi-input-multi-

output descriptor systems by using the KNVD method. The

dual problem of the pole assignment problem is the state

reconstruction problem i.e that is to find an estimator gain

matrix L such that the descriptor system

E
.

x̂ (t) = (A− LC) x̂ (t) +Bu (t) + Ly (t)

give us an approximation state vector x̂ (t) of x (t) or

otherwise the spectrum σ (E,A− LC) is within the unit

circle for discrete-time systems or to the left half plane for

continuous-time systems. For example the above system dsb
is observable

In[41]:= Observable@dsbD

Out[41]= True

and therefore there exists an estimator gain L

In[42]:= l= EstimatorGains@dsb, 8−1, −2<D

Out[42]=

i

k

jjjjjj

1

4

2

y

{

zzzzzz

such that the finite zeros of the matrix pencil sE −
(A− LC) be {−1,−2}

In[43]:= SmithForm@dsb@@1DD∗s−Hdsb@@2DD−l.dsb@@4DDL,sD

Out[43]=

i

k

jjjjjj

1 0 0

0 1 0

0 0 Hs + 1L Hs+ 2L

y

{

zzzzzz

Finally, we have created functions based on the algorithms

presented in [1], [2] that solve the linear-quadratic optimal

regulator (LQR) problem for continuous and discrete time

systems. That is, we have to compute a control u (t) that

minimize the cost functional

J (x, u) :=
1

2

∫
∞

0

(
xT uT

)( Q S
ST R

)(
x
u

)
dt

where the matrix R is positive definite and the matrix(
Q S
ST R

)
is positive semi-definite. The optimal solution

is a state-feedback of the form u (t) = −Kx (t) and K
is known as the optimal stabilizing control gain. Suppose

for example that we have the descriptor system dsb defined
above and we are interested to minimize the above cost

functional with matrices

Q = I3, R = 1, S = 03,1

First we define the matrices
In[44]:= q= IdentityMatrix@3D;

r= IdentityMatrix@1D;

and then find the optimal stabilizing control gain

In[46]:= k= LQRegulatorGains@dsbêê N,qêê N,rêê ND

Out[46]= H0.918643 -0.229661 -0.148304 L

Then, the closed loop system and the plot of the state are

given below

In[47]:= dscl1= StateFeedbackConnect@dsb,kD
SimulationPlot@dscl1,UnitStep@tD, 8t,0,10<D 

Out[47]=

i

k

jjjjjjjjjjj

0 0 0 0.081357 0.229661 0.148304 1.

0 1 1 0. 2. 0. 0.

1 0 0 0. 0. 1. 0.

0. 1. 0. 0.

y

{

zzzzzzzzzzz
•

�
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Similar functions have also been developed for the solution

of the LQR-problem for the discrete-time case.

III. CONCLUSIONS

A new Mathematica-based package, called Descriptor Sys-

tem Package, has been developed in order to extend the capa-

bilities of the CSP Suite of Mathematica. This new toolbox

provides new tools for modelling, analysis and design of

descriptor systems. It follows the same programming model

with the CSP Suite and uses both symbolic and numerical

algorithms. DSP is a very useful tool for teaching and

research in the field of control theory.
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