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An Algorithm for Decoupling and Maximal
Pole Assignment in Muoltivariable Systems
by the Use of State Feedback

A.L G. VARDULAKIS avp P. N R. STOYLE

Abstract—A simple alporithm to decouple 8 mwitivariable system and
simultanecunly avign the maximum possible number of the poles of the
resulting clowed-loop decoupled system by the use of state varisble feed-
back is presented. Varlous questions regarding the minimallty of the
decoupled system are resolved. The whole procedure ls illustrated by an
examphe,

1. INTRODUCTHN

We consider a linear time-invariant finite-dimensional multivariable
sysiem = described by a set of state space equations

x=Ax+ Bu (1a)
y=Cx {(1t)

where A ER*™", BER"™™, C SR™™*1. We assume that Z=(A4,B,() is
completely controllable and observable, that B and C are of full rank
m < and that T gives rise to 4 squage (m > m) nonsingular (over R(s):
the field of rationral functions) transfer function matrix T(s)=
Cisi—A)" 8.

In this paper a simple algorithun is presented to compute a linear state
variable feedback (LSVE) control law

= Fx+ o (2)

FreR™ " G*ER™ ", and det G* + 0, such thai the closed-loop system
Ze, G.—(A + BF*, BG*,C) gives rise to a transfer funciion matrix
T _go(5)= C(sI—~ A — BF*}~ 1pG* which is diagonal, nonsingular (over
R(s)) (i.&., the closed-loop system Z,4 ;. is ““decoupled™), and the maxi-
mum possible number of the poles of T o(s) is arbitrarily assigned.

As it has been shown i [1], the exisience of a “decoupling” LSVF
control law {F*, G*) entirely depends on: 1} the special form—C which
the output matrix C takes when (A, B, C} is lransformed to its Luen-
berger controllable canonical form [2]; and 2) the controllability indexes
of the pair (4, B}. This fact is formally restated here in Theorem 1 which
gives a new form of the classical necessary and sufficient condition [3]
for the existence of a decoupling LSVF control law (F*,G*). The
aigorithm which we will develop i based on the results reported in [1]
and the approach adopted also gives information about the structure of
the closed-loop system Zpe o, In particular, we examine under what
condjtions Fg. ;. is rminimal (i.e., the pair 4 + BF*,C is observable) and
if it is not mmimal, how unobservability of L. g- is related o the
eigenvalues and eigenvectors of A + BF* and the “zeros”™ of T(s) [4]. In
the following, we let m denoie the set of integers {1,2,- -, m].

II. DeCOUPLING AND POLE ASSIGNMENT

Under the controllability assumption of (4, B) it is known [2], [5] that
there always existz a nonsingular coordinate transformation x = Tx such
that TAT '=d, TB= 5, CT"-C and the pair (A B) is in the
Luenberger controllable canonical form. If o, »5,, (> 2r > are
the conirollability indexes of (A B) and p;=Z)_ Upiy.pp { Em then let
B be the 7 X m matrix consisting of the p, lEmo:l‘dt-'l‘od rows OTB then
B-BB [6], where B=block diag[&y,bq, - .6,) b =(00---.00)7Te
R“‘-*'-*’” iEm. Now if we take in (2}
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G* =8, 'G* (4)

then it can be verified that
Tpe gols)m C(sT A BF*) "\ BGY = C(sT— 4 — BF") "' BG*  (5)

where A=A, C=C, and now in order that T .(5) is diagonal nonsin-
gular and the maximum possible number of its poles have desired values
we must choose F* and &*. In view of (5) and the LSVF form of the
Wolovich and Falb [5], {6] structure theorem, Try ..(5) van be writlen as

T oo($)= C(sT— A — BF*) ' BG*=CS(s)85 5 G* (6)

*“;m]i -;i=(i,.3,52,‘ Ve ’Sﬁnwfr*']'r’ iSm

where 5(s)=block diag[s,, 5, -
B $)=[5%1— (A, + F)S(5) 7

[sP}=diag{stm s%-1 - - 5] and ,;M
m ordercd 7., { S rows of A

Let C(.v)-CS{s) be the “numerator matrix™ in the matrix fraction
description of (8) of T 5.(5), then we have the following.

Theorem I: A necessary and sufficient condition for the existence of
the LSYF control law (F™, G") such that Tm cu(5} 1s diagonal and
nonsingular is that the matnx

the m X o mateix consisting of the

K=[C()[s* " (8)

is nonsingular. Where [s% ~°]=diag[l, s - ... g%~ ™) and [ ]';_
denotes the matrix with elements in R consisting of the coefficients of
the highest degree s terms in esach row of the expression inside the
brackets.

The proof of the above theorem is given in [1] and will not be repeated
here. We only mentior that the relation of X with the classical B* matrix
i3], [5) is given by K= B*8 -1

Assurme now that the necéssary and sufficient condition of Theorem |
is zatisfied. We will describe 2 way 1o compute F* and G“' Let us assume
that C(.r) 15 nonsingular {over R(s)), iLe., that det C{.v)#:() (which 1s
equivalent to the assumption made in the introduction that F(s) is
nonsingular) and let D-(3) be the m X m nonsingular diagonal poly-
nomial matrix

D (s)=diag[d (shdy(sh -+ d(s))] (9

with each d(s), / Em equal 10 the greatest common divisor (ged) (monic)
of the corresponding ith row ;' (5} of C(s), i.e., let
d(s)=ged [¢,(5). () - - Gl i€m

where Eg{s} fem, j&m denotes the i jth polynomial element of é(.r).
Also tet 4, =deg {d,(5)}, i S m and write

E(s) = De()Cls). (1)
Also define [1]
j;-j:éiz{omﬂ__,-flfdcgéa(s)], iEm (11}
and let
A(s) = diag [B1{). By(s)h * 6nl0)] (12)

with §(s5), i €mr arbitrary monic polynomials of degree deg {8,(5)} =4 +
Si+1=&, iem. Now uke
Grak-l (13

and assume that there exists an F* such that it satisfies the eguation

Bp() =K T 18(s) Cp(s) (14)
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ar in view of {7) such that

[s2] ~(A,, + F*)5(s)= K ~'A(5)Cp{s). (15
Then
T go(5)= C(8)8 1 (5)G*
= D (s}l K 8053 Cals)] T K
= D(s}A() ™", (16)

i, Tpe g«(5) is diagonal nansingular and it has zeros which are the zeros
of d{s), i Em, and poles which are the zeros of 8{1), iEm.

Remark: The assumption made above that there always exists an P
satistying (14) [or (15)] wili be fully justified below. In crder to show that
this assumption is always valid we need the following.

Proposition 1: The number g of the zeros of the multivariable system
Sm(d,B.C)s=(4,8,C) or equally (since I is by assumption completely
controllable and observable) the number g of the zeros of T(s) [4}, [71-{9]
is mven by

g=n-m—f (17}

where f=Z7. | /.

Proof: 1t is known thal the zeros of E or equally of T{s} arc equal to
the zeros of the polynumials g(s),_iEm of the Smith normal form
E(s)=diagle (shexls). - - en(sd] of Cls), 8], [9], 6, g=deg[lI™. e(s})
=deg {det {(5}}. Considering the transfer function matrix T cu(s)=
Do(s)a(s)" " of the decoupled systam we see that if no zero of §(s)
coincides with a zero of d(s)' then the order of Te gels) is

b 5= E (f,+d+1)ymf+ d4m, (d— ﬁd,.)_

fum] il

Hence the number of poles of 7(s) that have been canceled oul with
zeros by the action of the decoupling LSYF (F*,G*) is

o
A= 2 &=n—{(f+d+m)
i=1
Also from (16), Tp= ge(s) bas 4 zeros herce the number of the zeros that
have been canceled out i

g—d=h (18)

As the number of zeros and poles canceled oul must be the same, we see
that A=n—(f+d+ m) or g=n—m~f. By talang determinants and then
degrees in both sid¢s of (1) we oblain

g=d+deg { det Co(5) } (19)
and comparing (18} and (19) we see that
Am=deg [ det Ca(s) ). (20)

Returning io Remark 1 we ses that by taking determinants and then
degrees in both sides of (15) we have the identity

n=deg | det8p(s)) =deg { det| K ~'A(5)Cpls}] )

"
= X S +A=f+d+mtg—d

fou]

=f+m+n—m—f=n

This shows that an F* satisfying {15) always exists. From the analysis
above we have the following.

Froposition. 2; The triple (4 + BF*, BG*,C) is minimal if and only if
A=0, ie., if and only if Cg{s) is a unimodular matrix.

1S5 (hat 1o further cancellation weeurs in 25}/ 8(s) iEm.



HI. Ow THE STRUCTURE OF THE DECOUPLED
CLosED-LooP SYSTEM

From (€) wa easily obtain the expression
(87 = A — BF*)5(s) = BSgu(s)
which in view of (14) gives
(sI— A— BF*)S(s) = BK ~'A(s)Cp{s). 21

Let A>>0 and assume for simplicity that det Cgls) has A distinet zeras?
5EC,i A, If by Fg(s) we denote the Smith normal form of Cﬂ(x) then
Ey(s) will have the form Eg(s)=[1,1,---,1,e(s)] where e(s)=detC(s)
and rank Cgp(s)=rank Eg(s)=m—1. Henoe dim{kerCr(5)}=1 and
there will bt some vector B;0& R™™! such that

Cals)B =0. 22)
From (21} and (22} we obtam
(20— A~ BF)S(s) 8= BK 'A(ICals)f =0, FEA  (23)
and if we put
x=8(s)F., €A (24)
from (23) we have
(5]~ A4 ~BF)i=0 iEA (25)
Equation (25) says that the s, i =X {i.e. the zeros of det Ca(s) which are
2 subset of the 2¢ros of T(.v)l are eigenvalues of A+ BAF* and the
commesponding eigenvectors are x,, i €X. Obviously %; are independent as

they correspond to distinet (by assumption) eigenvalues 5, i€A. If we
consider the subspace '

W =span { X, iEA} (2n

then obviously dim V= and V is an (A + BF*y-invariant subspace or
simply an (A, B)-invariant subspace [10]. Now since

Cr = CS(3)8,= C(5)B=Dols)Cals) =0, €N (28)
VCkerC (29)

and therefore °V is the unobservable subspace of the state space R™. We
give now another expression for V. Consider the { f+ 4+ m)x m poly-
nomial matnix

0 - 0
¥ 0 - J
ghi+d 0
o 1 0
0 K] ]
Z(s)m=| . . .
0 L T |
0 0 1
0 0 5
0 0 ven glmtdn

We define the { f+ d+ m) X m polynomial matrix C-,E-(.r) via

Cp(s) = Z(x) Cy(s)
and let C"'E be the ( f+ &+ m) X n matrix defined uniquety via the equa-

*The more general case of a noncyclic C-,,(.l} 35 dealt with in {11].
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tion
Cels)=CpSis).

Proposition 3 If 8(s), iEm, are chosen so that no zero of B{s)
coincides with a zero of dfs), i&m, then the unobservable subspace
YVER" is given by V=kerCg. _

Proof: Cpi,= CES(S W= Cels)B = Z(s,)CR(s),B =0, i€ ie, V
Cker Cg. From the structure of C {see example below), rank C£== f+d
+m, therefore dim {ker Cg) =n - (f+ d+m)=A, ie., V=kerCg.

Proposition 4: In order to decouple a system Z= =(A, B, C) that can be
decoupled® at least A = deg [det Cp{s)} of its zeros have to be canceled
out with coincident poles. (This is done automatically by the use of the
decoupling state feadback F*.) If the desired poles, i.c., the zeros of the
&(s) i€m, are chosen so that no further cancellation occurs between
the d(s) and §(5) i Em in one of the subsystemns with transfer function
d(5)/8(s), and if A >0, then the resulting closed-loop system Zo cow
(A +BF* BG* ) is controllable* but unobservable. The observable
subspace of the state space is spanned by the rows of C£ and has
dimension d+ f+ rmt = =, and the unobservable subspace is ‘E"-kerc
and has dimension A.

IV. ALJORITHM FOR DECOUPLING AND POLE ASSIGNMENT

1} Enter 4, 5,C. If the system is controllable and observable, then go

to step 2}, atherwise exit.

2) Compute the Luenberger controllable canonical form A, B,C. Store
the transformation matrix 7, the /X m matrix B, and the controllabil-
ity indexes 6, #0,,_ > - >0y

3y Form S(5), computc Cis), DeA(s) CR(J) Fut & =deg {45}, iEm
and J=ZE7 4.

4) Compute K and test if det K 3= 0. If ¥Es then GoTo {3) otherwise exil
{system can not be decoupled by LEVE alone).

5) Compute G*=K ~! and G*= B, 'G*.

6) Compute:

a) ﬁ-g{vmﬂ_jfl‘-dcgfﬁ.-(s)] ism
b} =d+f+1 i€m

and choose m monic polynomials §(s) of dcgror. 6, such that they have
desired roots. Form As)=diag[§,(s) 85(s),- - L]
7) Using (15), compute F* by inspection n.nrl F* via P-B o ad

IV. EXAMPLE

Consider the system in its Luenberger controllable canonical form

9 + 0 OO0 00 ¢ 0
6 ¢ 1 oo 00D 0 0
_.lo ¢ o mno oe¢l (o0
A1 __1L_[l-l|_g‘_l_g_, B=|1 2,
8 0 0 0 0 1 ¢ o 0
¢ 0 a oo o1 o o
2 1 -3 02 -1 2 o1
-_~_'_2 -1 0 0 -2 0 0
e=C=l2 310 11 0]
s0 that

£ 2 00 of
)= [o 0 0 0 1 ¢ s’]
- - —{s+2) -2
Cls)=CS5(s)= (s+1){s+2) s+1 ]

Mt satiafies, i.e., the necessary and sufficient condition of Theorem 1.
*Controllability is invariant under state feedback.
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_[v o[-+ -2]_ =
[o s+i][ 542 1] Dels)Cats)
and
dfr)ml, o, =0, dy(s)m(s+1), dy=1, d=I
e[ 2]
and so
_[[-G+2 -2 1 o1]?
X H {s+D(s+2) {.r+1)jHD .:”
-[‘} ‘ﬂ detK=1.

Hence the zystem can be decoupled.
fi=min{4—-1-1,3—-1-0} =2,
S=min{d-1-2,3-1-1}=1,
gmpn—m~—{(f+f)=2

[mumber of zeros of (4, 8,C), §,=f, +d, + 1 m3, b= f+da+ 1 =3 50 let

us take 8y(s)m= (5 +2), B(s)=(s+2), A(s}mdiag[8,{s),8;(s)). From A by
inspection

z 1 =1 o 1 2 1 2
A =
3 [2 1 -3 0 2 -1 2]
{sfl—j,.su)-[s‘—ﬁﬂ-l ~2st—s-2
Ist—5-2 =214 52
and
- P s+2)* 0
KAy Cg(n) = y |
0 {(s42)
From
[s°]— A,,5(s)— K ~'A(s)Cpls}
— 17— 22957 —2—5—25! o
- -.F-S i
[ —2—543 Llell:—&ez] ()
By inspection we have
o -17 =31 -4 -9 —2 -7 -2
Frm .
[—2 -1 3 0 ~10 -1 —8]
Also
e i~ e 1 2
Grmk [_1 7]].

Furthermore

] 0

5 0

2 0

2= o
0 =
o

and from 55(;)-2{:]6 R(s)-tf‘;S(s) we obtain

-2 -1 0 ¢ -2 0 a

0 -2 -1 0 ¢ -2 0

~ 0 0 =2 =1 0 g -2
Fol) [ . S S . g
2 1 0 0 1 0 0

0 2 1 o 0 1 0

0 0 2 ! 0 a 1

365

and

Veaspan{{1 -2 4 -8 0 0 ) }L

V. CoNcLUSIONS

An algorithm to compute an LSVF control law (F*,G*) that will
dacouple an m-input, m-output multivariable system into m independent
subsystems and simultaneously assign the poles of the resulting m
subsystems has been presenied. The guestions cancerning the minimality
of the resulting decoupled system have been also cxamined.
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