
IMA Journal of Mathematical Control and Information (2005)22, 12–25
doi:10.1093/imamci/dni002

On the computation and parametrization of proper denominator
assigning compensators for strictly proper plants

E. N. ANTONIOU† AND A. I. G. VARDULAKIS‡
Department of Mathematics, Aristotle University of Thessaloniki, 54006 - Thessaloniki, Greece

[Received on 1 August 2003]

Given a right coprime MFD of a strictly proper plantP(s) = NR(s)DR(s)−1 with DR(s) column proper
a simple numerical algorithm is derived for the computation of all polynomial solutions[ X L (s), YL (s)] of
the polynomial matrix Diophantine equationX L (s)DR(s)+YL (s)NR(s) = DC (s) which give rise to the
classΦ(P, DC ) of proper compensatorsC(s) := X L (s)−1YL (s) that when employed in a unity feedback
loop, result in closed-loop systemsS(P, C) with a desired denominatorDC (s). The parametrization of
the proper compensatorsC(s) ∈ Φ(P, DC ) is obtained and the number of independent parameters in the
parametrization is given.
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1. Introduction

We consider linear, time invariant, multivariable systems which are assumed to be free of unstable
hidden modes, whose input–output relation is described by a strictly proper transfer function matrix
P(s) (the plant). In this note we describe a numerically efficient algorithm for the computation of
the class of proper compensatorsC(s) which, when employed in the unity feedback loop of Fig. 1,
gives rise to a closed-loop systemS(P, C) with a specific closed-loop denominatorDC (s) (Rosenbrock
& Hayton, 1978; Kucera, 1970). In particular, given a right coprime MFD of a strictly proper plant
P(s) = NR(s)DR(s)−1 with DR(s) column proper (column reduced) and an appropriately defined
polynomial matrixDC (s) with desired zeros, we extend the (Wolovich, 1974) resultant theorem and a
theorem by Callier & Desoer (1982), Callier (2001) and Kucera & Zagalak (1999) in order to obtain
an algorithm for the computation of all polynomial solutions[ X L(s), YL(s)] of the polynomial matrix
Diophantine equation

X L(s)DR(s) + YL(s)NR(s) = DC (s) (1)

which give rise to the classΦ(P, DC ) of proper compensatorsC(s) := X L(s)−1YL(s) that result
in closed-loop systemsS(P, C) with DC (s) as their closed-loop denominator. The issues of the
parametrization of the proper compensatorsC(s) ∈ Φ(P, DC ) and the number of independent
parameters in the parametrization are also resolved. This is done by investigating the properties of a
generalized version of Wolovich’s resultant to obtain a series of new results regarding its algebraic
structure. Despite the fact that similar results for Sylvester-type resultants have been presented in
Bitmeadet al. (1978), the Wolovich resultant has not received the expected attention, except perhaps
by Wolovich (1974) and Hayton (1980) where Wolovich’s resultant is used as a tool for testing the
coprimeness of polynomial matrices.
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FIG. 1. The unity feedback systemS(P, C).

The method presented here can be compared to the one in Antsaklis & Gao (1993), where Wolovich’s
resultant is employed as a tool for the construction of the interpolation matrix. However, our method
requires only knowledge of the coefficients of the polynomial matricesDR(s), NR(s) and provides a
parametrization of all proper denominator assigning controllers, unifying in this way the ‘resultant’
approach with the approaches in Callier & Desoer (1982), Callier (2001) and Kucera & Zagalak (1999).
The proposed approach can be viewed as a generalization of the method presented in Antsaklis & Michel
(1997, Theorem 2.13, p. 547) where the solution of a degree-specific Diophantine equation is obtained
using Wolovich’s resultant. Furthermore, through the investigation of the rank of the generalized
Wolovich resultant, we establish the lower bound for the (McMillan) degree of an arbitrary closed-
loop denominator, a fact which has been used throughout the constructions in Callier & Desoer (1982),
Callier (2001) and Kucera & Zagalak (1999), but not justified via some theoretic argument.

2. Preliminaries

In the followingR, C, R(s), R [s] , Rpr (s), Rpo(s) are respectively the fields ofreal numbers, complex
numbers, real rational functions, the rings ofpolynomials, proper rational andstrictly proper rational
functions all with coefficients inR and indeterminates. For a set F, F

p×m denotes the set ofp ×
m matrices with entries inF. N

+ is the set of positive integers. Ifm ∈ N
+ then m denotes the set

{1, 2, . . . , m}. Finally δM [·] denotes the McMillan degree of[·]
Let NR(s) ∈ R[s]p×m, DR(s) ∈ R[s]m×m be a pair of polynomial matrices withDR(s) invertible

for almost everys ∈ C and define the compound matrixF(s) := [
D�

R (s), N�
R (s)

]�
. Respectively

let DL(s) ∈ R[s]p×p, NL(s) ∈ R[s]p×m (with DL(s) invertible for a.e.s ∈ C) and E(s) :=
[−NL(s), DL(s)] such that

E(s)F(s) = 0. (2)

The pair of matricesNR(s), DR(s) (resp.NL(s), DL(s)) will be called right (resp. left) coprime iffF(s)
has full column rank (resp.E(s) has full row rank) for everys ∈ C. It isknown that ifNR(s), DR(s) are
right coprime andNL(s), DL(s) left coprime, then

deg|DR(s)| = deg|DL(s)|. (3)

A polynomial matrixX (s) ∈ R[s]p×m(m � p) is called column proper or column reduced iff its highest
column coefficient matrix denotedXhc, which is formed by the coefficients of the highest degrees ofs
in each column ofX (s), has full column rank. The column degrees ofX (s) are usually denoted by
degci X (s), i ∈ m. RespectivelyY (s) ∈ R[s]p×m (p � m) is called row proper or row reduced iff
Y T (s) is column proper and the row degrees ofY (s) are denoted by degri Y (s), i ∈ p. Furthermore, a
square polynomial matrixX (s) ∈ R[s]m×m is called row-column reduced (Callier & Desoer, 1982) with
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row powersri and column powersci , i ∈ m iff the matrix diag
i∈m

{s−ri }X (s)diag
i∈m

{s−ci } is biproper (i.e. it

is proper and its inverse exists and it is proper as well).

LEMMA 1 (Vardulakis, 1991; Corollary 3.100, p. 144) IfX (s) ∈ R[s]p×m (p � m) is column proper
thenX (s) has no zeros at infinity and its (ordered) column degrees are the orders of its poles at infinity
i.e. if

S∞
X (s) =

[
diag{sq1, sq2, . . . , sqm }

0p−m,m

]

is the Smith–McMillan form ofX (s) at infinity, with q1 � q2 � · · · � qm � 0, thenqi = degci X (s),
i ∈ m. Furthermore, sinceX (s) (as polynomial matrix) has no finite poles and due tosqi has (possibly)
only poles at infinity,δM X (s) = ∑m

i=1 degci X (s).

Obviously a similar result holds for row proper matrices.
When (2) is satisfied andE(s) is row proper withDL(s), NL(s) left coprime,E(s) is a minimal

polynomial basis of the (rational) vector space spanning the left kernel ofF(s) and the row degrees
degri E(s) =: µi , i ∈ p of E(s) are the invariant row minimal (dual) dynamical indices of

P(s) = NR(s)D−1
R (s) = D−1

L (s)NL(s). (4)

In such a case it is known (Forney, 1975) thatE(s) has the following properties:

1. if p(s)� ∈ R[s]1×(p+m) is a polynomial vector such thatp(s)�F(s) = 0 then there exists a
polynomial vectorw(s)� = [w1(s), w2(s), . . . , wp(s)] ∈ R[s]1×p such that

p(s)� = w(s)�E(s); (5)

2. if p(s)� = w(s)�E(s) then

degp(s)� = max
i∈p

{degwi (s) + µi }. (6)

The following result establishes a relation between the McMillan degrees ofP(s) and E(s) (or
F(s)).

LEMMA 2 (Vardulakis, 1991; p. 140) IfE(s) has no zeros inC ∪ {∞} (equiv. DL(s), NL(s) are left
coprime inC ∪ {∞}) then

δM P(s) = δM E(s). (7)

WhenE(s) is a minimal polynomial basis of the left kernel ofF(s), i.e. E(s) has no zeros inC and
is row proper, by Lemma 1E(s) will have no zeros inC ∪ {∞} and thus, from the last statement of
Lemma 1,

δM P(s) = δM E(s) =
p∑

i=1

degri E(s). (8)
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Furthermore, if alsoDR(s), NR(s) are right coprime andF(s) is column proper then again, from
Lemmata 1 and 2,

δM P(s) = δM F(s) =
m∑

i=1

degci F(s), (9)

thus in such a case we get the well known result (Forney, 1975) that

p∑
i=1

degri E(s) =
m∑

i=1

degci F(s). (10)

3. Generalized Wolovich resultant

Let ki = degci F(s), i ∈ m be the column degrees ofF(s) and similarly to Wolovich (1974, p. 242) for
k � 1 define the(m + p)k × m polynomial matrixXk(s) via

Xk(s) := Sk(s)

[
DR(s)
NR(s)

]
=




Im+p

s Im+p

···
sk−1Im+p




(m+p)k×(m+p)

[
DR(s)
NR(s)

]
(m+p)×m

=




F(s)
s F(s)

···
sk−1F(s)




(m+p)k×m

(11)

and notice thatXk(s) can be written as

Xk(s) = Mek


block diag

i∈m







1
s

···
ski +k−1










(
m∑

i=1
ki +mk

)
×m

=: Mek Sek(s) (12)

whereMek ∈ R
(m+p)k×(mk+∑m

i=1 ki). Notice thatMek does not coincide with the one in Wolovich (1974)
since Wolovich assumes thatDR(s) is column proper andP(s) = NR(s)D−1

R (s) is proper. Apart from
that, essentially the two matrices differ only up to row permutations.

One of our goals is to describe the left null space (kernel) ofMek which in what follows is denoted
by

K er M�
ek = {x� ∈ R

1×(m+p)k : x�Mek = 0}. (13)

The following theorem determines the dimension of kerM�
ek .

THEOREM 3 Let NR(s) ∈ R[s]p×m, DR(s) ∈ R[s]m×m be a pair of polynomial matrices with

rankR(s)
[
D�

R (s), N�
R (s)

]� = m. Let alsoP(s) = NR(s)D−1
R (s) ∈ R(s)p×m , µi , i ∈ p be the invariant

row minimal dynamical indices ofP(s) andMek ∈ R
(m+p)k×(mk+∑m

i=1 ki) as defined in (12). Then

dimR kerM�
ek =

∑
i :µi �k

(k − µi ). (14)



16 E. N. ANTONIOU AND A . I . G. VARDULAKIS

Proof. The proof is identical to that of Theorem 1 in Bitmeadet al. (1978). �

It is interesting to notice that the dimension of the kernel obtained here is identical to the one given
in Theorem 1 in Bitmeadet al. (1978), despite the fact that the generalized Sylvester resultantSk in
Bitmeadet al. (1978) does not coincide in general withMek . Notice also that the above result does not
requireDR(s), NR(s) to be right coprime norDR(s) to be column proper. We give now a generalization
of the result that appears in Antsaklis & Gao (1993, Lemma 3.2), in the sense that we relaxP(s) =
NR(s)D−1

R (s) from the properness requirement as well as from the assumption thatDR(s) is column
proper.

COROLLARY 4 Under the assumptions of Theorem 3, we have

rankMek = (p + m)k −
∑

i :µi �k

(k − µi ). (15)

Furthermore, ifk is chosen s.t.k � µ, whereµ = max
i∈p

{µi } then

rankMek = mk + δM P(s). (16)

Proof. Equation (15) follows simply from the fact that rankMek = (p + m)k − dimR kerM�
ek and (14).

Now for k � µ, (15) becomes rankMek = (p + m)k − ∑p
i=1(k − µi ) or equivalently rankMek =

mk + ∑p
i=1 µi , thus (16) follows from the facts

∑p
i=1 µi = δM E(s) = δM P(s) in Lemmata 1 and 2.�

Notice that in the case thatDR(s) is column proper andP(s) := NR(s)D−1
R (s) is proper,δM P(s) =

{# of poles of P(s) in C} = deg|DR(s)|. Therefore, fork � µ the above result coincides with the
result of Lemma 3.2 in Antsaklis & Gao (1993). The following corollary provides a generalization of
the corresponding result in Wolovich (1974, p. 242).

COROLLARY 5 Let NR(s) ∈ R[s]p×m, DR(s) ∈ R[s]m×m be a pair of polynomial matrices with

F(s) = [
D�

R (s), N�
R (s)

]�
column proper with column degrees degci F(s) = ki , i ∈ m. Then

NR(s), DR(s) are right coprime inC iff Mek has full column rank fork � µ, or equivalently if

F(s) = [
D�

R (s), N�
R (s)

]�
is column proper thenNR(s), DR(s) are right corpime inC iff for k � µ,

rankMek = mk + δM F(s).

Proof. First notice that from (12) the number of columns inMek is mk+ ∑m
i=1 ki . SinceF(s) is column

proper it has no zeros at infinity and from Lemma 1
∑m

i=1 ki = δM F(s). Hence the number of columns
in Mek is mk + δM F(s).

(⇒) Let NR(s), DR(s) be right coprime inC. Then from Corollary 4 fork � µ, rankMek = km +
δM P(s). Since F(s) is column proper from Lemma 1 it has no zeros at infinity, thusNR(s), DR(s)
are right coprime ats = ∞. HenceNR(s), DR(s) are right coprime inC ∪ {∞}, thus from Lemma 2
δM P(s) = δM F(s) and rankMek = km + δM F(s).

(⇐) Assume thatNR(s), DR(s) are not right coprime inC. Then there exists 0�= x ∈ R
m×1 and

s0 ∈ C such thatF(s0)x = 0. In view of (12)

Xk(s0)x = Mek Sek(s0)x = 0

henceMek does not have full column rank. �
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The following remark establishes the fact thatMek can have full column rank only fork � µ.

REMARK 6 Let DR(s) ∈ R[s]m×m, NR(s) ∈ R[s]p×m such thatDR(s), NR(s) be right coprime inC

andF(s) = [
D�

R (s), N�
R (s)

]�
be column proper with column degrees degci F(s) = ki , i ∈ m. Let also

µi , i ∈ p be the left minimal indices ofF(s) and defineµ = max
i∈p

{µi }. Then fork < µ

rankMek < mk +
m∑

i=1

ki (17)

i.e. Mek cannot have full column rank fork < µ.

Proof. Assumek < µ and leta be the number ofµi satisfyingµi > k. It is easy to see that

ka <
∑

i :µi >k

µi . (18)

Using the fact that
∑p

i=1 µi = ∑
i :µi >k µi + ∑

i :µi �k µi we can write (18) aska + ∑
i :µi �k µi <∑p

i=1 µi or equivalently as

pk − k(p − a) +
∑

i :µi �k

µi <

p∑
i=1

µi . (19)

Notice that the number of terms in
∑

i :µi �k µi is exactlyp − a, thus we can write (19) as

pk −
∑

i :µi �k

(k − µi ) <

p∑
i=1

µi . (20)

Addingmk on both sides of (20) we get(m + p)k −∑
i :µi �k(k −µi ) < mk +∑p

i=1 µi where obviously

the left-hand side is rankMek and
∑p

i=1 µi = ∑m
i=1 ki due to the assumptions of coprimeness (of

DR(s), NR(s) in C) and the column properness ofF(s) (see 10). Thus (17) follows.

The above result has a direct implication on the choice of the row degrees ofDC (s) in (1) which will
be discussed in the following section.

4. Application to matrix Diophantine equations

Consider a strictly proper linear multivariable plant,P(s) ∈ Rpo(s)p×m with m inputs andp outputs
and let

P(s) = NR(s)DR(s)−1 = DL(s)−1NL(s) (21)

be respectively right and left coprime MFDs ofP(s) with NR(s) ∈ R [s] p×m and DR(s) ∈ R [s]m×m

andcolumn proper with column degrees degDRci (s) = ki , i ∈ m, NL(s) ∈ R [s] p×m and DL(s) ∈
R [s] p×pand row proper with row degrees degDLri (s) = µi , i ∈ p. Define µ := max

i∈p
{µi } (the

observability index ofP(s)).
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The problem of assigning the denominator of the closed-loop system using unity feedback and a
dynamic precompensatorC(s) ∈ R(s)m×p can be reduced to the solution of the polynomial matrix
Diophantine equation of the form

X L(s)DR(s) + YL(s)NR(s) = DC (s) (22)

where DC (s) ∈ R [s]m×m is the desired closed-loop denominator matrix andX L(s) ∈
R [s]m×m , YL(s) ∈ R [s]m×p is a left (not necessarily coprime) MFD ofC(s), i.e.

C(s) = X L(s)−1YL(s) ∈ R(s)m×p. (23)

It is well known that (22) has a solution for arbitraryDC (s) iff DR(s), NR(s) are right coprime.
Furthermore, ifX L(s), Y L(s) is a particular solution of (22) then every pair of the formX L(s) =
X L(s)+T (s)NL(s), YL(s) = Y L(s)−T (s)DL(s) is also a solution of (22) for any arbitrary polynomial
matrix T (s) ∈ R [s]m×p.

However, the question usually posed is under what conditions (22) can have solutions that give rise to
aproper compensatorC(s) ∈ Rpr (s)m×p. For a particular type of closed-loop denominator this problem
has been studied and solved by several authors (see Rosenbrock & Hayton, 1978; Emre, 1980; Callier
& Desoer, 1982; Kucera, 1970) and a parametrization of all possible proper denominator assigning
compensators has been given (see Kucera & Zagalak, 1999; Callier, 2001). According to this approach
the desired denominator is chosen to be row-column reduced with particular row and column powers in
order to be able to apply degree control on the numerator and denominator ofC(s).

The contribution of the present paper is to provide a numerical algorithm which employs Wolovich’s
resultant proposed in the previous section to obtain a parametrization of all denominator assigning proper
compensators. LetX L(s), YL(s) be a solution of (22) for a particular choice ofDC (s) and letk − 1 be
the maximum degree ofs occurring amongst the elements of the matrixΩ(s) := [ X L(s), YL(s)] ∈
R [s]m×(m+p). ThenΩ(s) can be written as

Ω(s) = Ω k Sk(s) (24)

whereΩ ∈ R
m×k(p+m) andSk(s) is as defined in (11). Then (22) can be written as

Ω k Mek Sek(s) = DC (s) (25)

with Sek(s) defined if (12). Comparing the degrees ofs in both sides of (25) it is easily seen
that degci DC (s) � ki + k − 1, i ∈ m thus DC (s) can be written asDC (s) = Dk Sek(s), Dk

∈ R
m×(

∑m
i=1 ki +mk) and (25) becomes

Ω k Mek Sek(s) = Dk Sek(s) (26)

or equivalently

Ω k Mek = Dk (27)

since (26) must hold for everys ∈ C. Thus every solution of (22) can be determined from a set of
numerical equations of the form (27) given the maximum degree ofΩ(s) and selecting the appropriate
k.

The following lemma can be found in Kucera & Zagalak (1999) stated for the dual of (22), i.e. for
a left MFD of P(s). For our purposes we shall state the corresponding assumptions and the result for a
right MFD of P(s).
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LEMMA 7 (Kucera & Zagalak, 1999; Lemma 2) Consider (22) under the following assumptions:

1. DR(s) is column proper with column degreeski = degci DR(s), i ∈ m,
2. DR(s), NR(s) are right coprime,
3. P(s) = D−1

R (s)NR(s) = NL(s)D−1
L (s) is strictly proper,

4. NL(s), DL(s) are left coprime,
5. DL(s) is row proper with row degreesµi = degri DL(s), i ∈ p and defineµ = max

i∈p
{µi },

6. DC (s) is both row and column reduced with degci DC (s) = degri DC (s) = ki + ξi , i ∈ m where
ξi are integers s.t.ξi � µ − 1, i ∈ m.

If X L(s), YL(s) is a solution of (22) andC(s) = X−1
L (s)Y (s) ∈ Rpr (s) then X L(s) is row proper

with row degrees degri X L(s) = ξi , i ∈ m.

Notice that if X L(s)−1Y (s) ∈ Rpr (s)m×p then the row degrees ofYL(s) cannot exceedξi , i.e.
degri YL(s) � ξi , i ∈ m (Kailath, 1980; Callier & Desoer, 1982), thus the maximum degree of thei th
row of Ω(s) = [ X L(s), YL(s)] will be ξi . Denote the rows ofΩ(s) by ω�

i (s) ∈ R [s]1×(m+p) , i ∈ m.
Write

ω�
i (s) =

ξi∑
j=0

ω�
i j s

j , ω�
i j ∈ R

1×(m+p), i ∈ m (28)

and define the row vectorsω�
i = [ω�

i0, ω
�
i1, . . . , ω

�
iξi

] ∈ R
1×(p+m)(ξi +1), i ∈ m.

Now let d�
i (s), i ∈ m be the rows ofDC (s) and using assumption 6 of Lemma 7 definedi

� ∈
R

1×m(ξi +1)+∑m
i=1 ki , i ∈ m from the relation

d�
i (s) = di

�
Se(ξi +1)(s), i ∈ m (29)

whereSe(ξi +1) is the(m(ξi + 1) + ∑m
i=1 ki ) × m matrix defined in (12).

THEOREM 8 Let the assumptions 1–6 of Lemma 7 hold. Then every solution pairX L(s), YL(s) of
(22) such thatC(s) = X L(s)−1YL(s) ∈ R

m×p
pr (s) can be obtained from the solutions of the numerical

equations

ω�
i Me(ξi+1) = di

�
, i ∈ m (30)

and vice versa: that is, every solutionω�
i of (30) gives rises via (28) to aΩ(s) = [ X L(s), YL(s)], s.t.

C(s) = X L(s)−1YL(s) ∈ R
m×p
pr (s).

Proof. First notice that (30) are always solvable for arbitrarydi
T

sinceξi + 1 � µ and thus from
Lemma 5 in conjunction with assumptions 1–2 of Lemma 7Me(ξi +1) has full column rank.

If X L(s), YL(s) is a solution of (22) andX−1
L (s)YL(s) is proper according to Lemma 7 the row

degrees ofΩ(s) will be ξi and thus we can writeω�
i (s) as in (28). It is easy to see that the corresponding

ω�
i will satisfy (30).

Conversely, if ω�
i satisfy (30) then post-multiplying (30) by Se(ξi +1)(s) gives

ω�
i Me(ξi+1)Se(ξi +1)(s) = di

�
Se(ξi +1)(s), i ∈ m or equivalently from (12)

ω�
i S(ξi +1)(s)

[
DR(s)
NR(s)

]
= d�

i (s), i ∈ m
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which equivalently gives

ω�
i (s)

[
DR(s)
NR(s)

]
= d�

i (s), i ∈ m. (31)

ObviouslyΩ(s) = [
ω�

1 (s), ω�
2 (s), . . . , ω�

m (s)
]�

satisfies (22) and degri Ω(s) � ξi , i ∈ m. Hence
degri X (s) � ξi and degri Y (s) � ξi , i ∈ m.

Now letΛk(s) = diag{sk1, sk2, . . . , skm }, Λξ (s) = diag{sξ1, sξ2, . . . , sξm } and pre- and post-multiply
(22) respectively byΛξ (s)−1 andΛk(s)−1 to get

Λξ (s)
−1X L(s)DR(s)Λk(s)

−1 + Λξ (s)
−1YL(s)NR(s)Λk(s)

−1 = Λξ (s)
−1DC (s)Λk(s)

−1. (32)

Since DR(s) is column proper with column degreeski , DR(s)Λk(s)−1 is biproper. Similarly, since
DC (s) is row and column reduced with row powersξi and column powerski , Λξ (s)−1DC (s)Λk(s)−1

is also biproper. Using the fact thatP(s) is strictly proper,Λk(s) is column proper and degci NR(s) <

ki , i ∈ m it follows thatNR(s)Λk(s)−1 is strictly proper. Finally, since degri X (s) � ξi and degri Y (s) �
ξi , i ∈ m, Λξ (s)−1X L(s) andΛξ (s)−1YL(s) are proper in general. Thus taking limits fors → ∞ on
both sides of (32) we obtain the equation

Xhr
L Dhc

R = Dhrc
C

where Xhr
L is the highest row degree coefficient matrix ofX L(s), Dhc

R is the highest column degree
coefficient matrix ofDR(s) and Dhrc

C is the highest row–column power coefficient matrix ofDC (s).
ObviouslyXhr

L is invertible sinceDhc
R , Dhrc

C are invertible. Hence,X L(s) is row proper with row degrees
ξi and since degri Y (s) � ξi , i ∈ m, X L(s)−1YL(s) ∈ Rpr (s) is proper. �

The above result allows us to determine the number of independent parameters in the parametrization
of all proper denominator assigning compensators for a strictly proper plant, in terms the McMillan
degree of the plant, the number of inputs and outputs and the particular choice ofξi .

COROLLARY 9 Let assumptions 1–6 of Lemma 7 hold. Then the number of independent parameters in
the parametrization of all denominator assigning proper compensators is

v = m(p − δM P(s)) + p
m∑

i=1

ξi . (33)

Proof. Using the result of Theorem 8, the degrees of freedom in the choice ofωT
i (s) is essentially equal

to the dimension of the left kernel ofMe(ξi +1). Thus the total number of independent parameters will be
v = ∑m

i=1 dimR kerMe(ξi +1). Now sinceξi + 1 � µ, dimR kerMe(ξi +1) = ∑p
j=1(ξi + 1 − µ j ). Thus

v =
m∑

i=1

p∑
j=1

(ξi + 1 − µ j ) = mp + p
m∑

i=1

ξi − m
p∑

j=1

µ j

which using the fact thatδM P(s) = ∑p
j=1 µ j gives (33).

Notice that in case we chooseξ1 = ξ2 = · · · = ξm := ξ , we do not need to solve (30) independently
for each row, but we can use one resultant, namelyMe(ξ+1), to determine all rowsω�

i (s). In such a case
the number of independent parameters in the parametrization will bev = m(p(ξ + 1) − δM P(s)).
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Although Theorem 8 provides a way to reduce the computation of proper compensators to the
solution of a set of numerical equations of the form (30), we can go a step further and propose a
method that reduces the problem to a single numerical equation. This can be done by exploiting the
shift-invariant form of the generalized Wolovich resultant and using Gaussian elimination.

Let i1, i2, . . . , im be indices such thatξi1 � ξi2 � · · · � ξim . Let alsoξ := ξim = max
i∈m

{ξi }. In order

to solve (30) fori = i1 we can apply Gaussian elimination on the columns ofMe(ξi1+1) to obtain the
reduced column echelon formRe(ξi1+1). Due to the shift-invariant form of the resultant, the columns of
Me(ξi1+1) appear in the first(p+m)ξi1 rows ofMe(ξi2+1) (together withm zero columns). SinceMe(ξi1+1)

has full column rank, the reduced column echelon form ofMe(ξi2+1) will have the block triangular form

Re(ξi2+1) =
[

Re(ξi1+1) 0
Q11 Q12

]
.

Proceeding inductively it is easy to see thatRe(ξi j+1+1) will also have a similar block triangular form

Re(ξi j+1+1) =
[

Re(ξi j +1) 0

Q j1 Q j2

]

for j = 1, 2, . . . , m − 1. Thus, reducingMe(ξ+1) into column echelon form essentially provides a
solution to all (30) sinceRe(ξ+1) consists of blocks that give successivelyRe(ξi j +1), j ∈ m.

In the light of the above analysis we provide the following algorithm:

• Step 1. Obtain a right coprime MFDNR(s) ∈ R [s] p×m , DR(s) ∈ R [s]m×m of P(s) with DR(s)
column proper with column degrees degci DR(s) = ki , i ∈ m.

• Step 2. Determine the minimumk for which Mek has full column rank. Thenµ = k and choose
ξi � µ − 1, i ∈ m.

• Step 3. Using (12) construct the generalized Wolovich resultantMe(ξ+1) whereξ = max
i∈m

{ξi }.
• Step 4. ChooseDC (s) ∈ R [s]m×m to be row and column reduced with column powerski , and row

powersξi and constructD(ξ+1) by decomposingDC (s) = D(ξ+1)Se(ξ+1)(s) as in (26).

• Step 5. Construct the compound matrixMe(ξ+1) =
[

Me(ξ+1)

D(ξ+1)

]
.

• Step 6. ReduceMe(ξ+1) into column echelon form to obtainRe(ξ+1) =
[

Re(ξ+1)

∆(ξ+1)

]
.

• Step 7. Compute the (general) solution for each rowω�
i for i = 1, 2, . . . , m, using the first(ξi +

1)(p + m) rows of Re(ξ+1) and thei th row of Z(ξ+1) (discarding the last(ξ − ξi )m columns on both
matrices because they contain only zeros).

• Step 8. Using (28) calculateω�
i (s) of Ω(s) from ω�

i for i = 1, 2, . . . , m.

Notice that the above method does not require calculation of a left coprime MFD ofP(s) for the
parametrization of solutions as in Kucera & Zagalak (1999) or Callier (2001) nor the computation of
a Y -minimal particular solution as in Kucera & Zagalak (1999). The only information that affects the
choice of the closed-loop denominator is the observability indexµ of P(s) which can be determined
using rank tests onMek for successive choices ofk = 1, 2, 3, . . . , since due to Remark 6,µ is equal to
the minimumk for which Mek has full column rank. This fact justifies the choice of the lower bound for
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the row powersξi of the desired closed-loop denominator. In the previous section we showed thatk � µ

is a necessary and sufficient condition (provided thatDR(s), NR(s) are coprime andDR(s) is column
proper) in order forMek to have full column rank, imposing this way the lower bound for the choice ofξi

that make (30) solvable for arbitrary choice of the right-hand side matrix. This lower bound on the choice
of ξi has been used in the past but has not been justified via theoretic argument. Withξi = µ− 1, i ∈ m,
the McMillan degree of the controllerC(s) = X L(s)−1YL(s), is genericalyδM C(s) = m(µ − 1).
However, there might be cases whenX L(s), YL(s) turn out to have a left (non-unimodular) common
divisor, giving rise to aC(s) with McMillan degreeδM C(s) < m(µ − 1).

We should also notice that the Gaussian elimination method has been chosen here only for
simplicity of presentation. The above algorithm can be applied equally well using unitary Householder
transformations to reduceMe(ξ+1) to a lower (block) triangular form, which performs better from a
numerical point of view.

We demonstrate the above procedure via the following example (the plant and MFDs appear in the
example in Callier (2001) but the desired closed-loop denominator has been changed in order to illustrate
the method forξ1 �= ξ2).

EXAMPLE 10 Let

P(s) =
[

s+1
s(s−2)

0
1

s(s−1)
1

s−1

]

with

DR(s) =
[

s2 − 2s 0
1 s − 1

]
, NR(s) =

[
s + 1 0

1 1

]

so thatk1 = 2, k2 = 1 andδM P(s) = k1 + k2 = 3. The observability index ofP(s) is µ = 2, since it
can be easily seen thatMe1 does not have full column rank whileMe2 does. Let the desired closed-loop
denominator polynomial matrix be

DC (s) = diag{s3 + 8s2 + 24s + 32, s3 + 15s2 + 62s + 48}
with ξ1 = 1, ξ2 = 2, ξ = max{ξi } = 2. We should expect the parametrization of all proper compensators
giving rise to DC (s) to havem(p − δM P(s)) + p

∑m
i=1 ξi = 4 independent parameters. Create the

generalized Wolovich resultant fork = ξ + 1 = 3:

Me3 =




0 −2 1 0 0 0 0 0 0
1 0 0 0 0 −1 1 0 0
1 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0
0 0 −2 1 0 0 0 0 0
0 1 0 0 0 0 −1 1 0
0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0
0 0 0 −2 1 0 0 0 0
0 0 1 0 0 0 0 −1 1
0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 1 0




∈ R
12×9.
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Write DC (s) in terms of its coefficients as follows:

DC (s) = D3Se3(s)

=
[
32 24 8 1 0 0 0 0 0
0 0 0 0 0 48 62 15 1

]
Se3(s).

Now define the compound matrixMe3 =
[

Me3

D3

]
and apply Gaussian elimination on the columns ofMe3

to obtain the column echelon form which is

Re3 =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0

−1 1 −2 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 0 0 0 1 0 2 0 0
0 1 −2 1 0 1 1 0 0
6 0 32 0 1 0 4 0 0

−63 78 −204 126 0 16 62 0 1




=
[

Re3
∆3

]

whereRe3 ∈ R
12×9,∆3 ∈ R

2×9. To determineωT
1 (s) take the first(p + m)(ξ1 + 1) = 8 rows of Re3

as well as the first row of∆3 discarding the last two columns on both matrices. This corresponds to the
reduced echelon form of (30) fori = 1, i.e.

ω�
1




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

−1 1 −2 1 0 0 1




= [
6 0 32 0 1 0 4

]

whose general solution is

ω�
1 = [

6 0 32 0 1 0 4 0
] + [

1 −1 2 −1 0 0 −1 1
]

t1

wheret1 ∈ R. Thus, from (28),

ω�
1 (s) = [

s + 6 + t1 −t1 (4 − t1)s + 32+ 2t1 t1s − t1
]

.
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Accordingly, to determineωT
2(s) take the first(p + m)(ξ2 + 1) = 12 rows ofRe3 as well as the

second row of∆3. This corresponds to the reduced echelon form of (30) fori = 2, i.e.

ω�
2




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0

−1 1 −2 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 0 0 0 1 0 2 0 0
0 1 −2 1 0 1 1 0 0




= [−63 78 −204 126 0 16 62 0 1
]

whose general solution is

ω�
2 = [ −63 78 −204 126 0 16 62 0 0 1 0 0

]
+ [

t2 t3 t4
] 
 1 −1 2 −1 0 0 −1 1 0 0 0 0

−1 0 0 0 −1 0 −2 0 0 0 1 0
0 −1 2 −1 0 −1 −1 0 0 0 0 1




wheret2, t3, t4 ∈ R. Thus, from (28),

ω�
2 (s) = [−63+ t2 − t3 − st3 78− t2 − t4 + s(16− t4) + s2

−204+ 2t2 + 2t4 + s(62− t2 − 2t3 − t4) + s2t3 126− t2 − t4 + st2 + s2t4
]

.

Now Ω(s) = [X L(s), YL(s)] = ω�
1 (s)

ω�
2 (s)

, thus the parametrization of all proper compensators is

X L(s) =
[

s + 6 + t1 −t1
−63+ t2 − t3 − st3 78− t2 − t4 + s(16− t4) + s2

]

YL(s) =
[

(4 − t1)s + 32+ 2t1 t1s − t1
−204+ 2t2 + 2t4 + s(62− t2 − 2t3 − t4) + s2t3 126− t2 − t4 + st2 + s2t4

]

for free parameterst1, t2, t3, t4 ∈ R. Notice that the number of parameters is the expected one, i.e. 4.
ObviouslyX L(s) is row proper with row degrees 1, 2 while the corresponding row degrees ofYL(s) do
not exceed 1, 2. ThusX−1

L (s)YL(s) is proper. �

5. Conclusions

In this paper we have investigated the problem of the determination of a proper denominator assigning
compensator for the class of strictly proper linear multivariable plants. Our approach focuses on
the numerical computation of the coefficients of the polynomial matrices that describe the dynamic
compensator and a parametrization of all such compensators corresponding to the one in Kucera &
Zagalak (1999) and Callier (2001) has been provided.
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The suggested method utilizes a generalized version of the resultant attributed to Wolovich (see
Wolovich, 1974) whose structural properties surprisingly have not been studied in detail. In the light
of the results presented in Section 3 the generalized Wolovich resultant is proved to be the ideal tool
for handling polynomial matrix Diophantine equations when degree control of the solution is required.
The entire procedure is reduced to the computation of a solution of a set of numerical equations and the
determination of the left kernel of the generalized Wolovich resultant. Furthermore, our analysis shows
that the number of independent parameters in the parametrization of all proper compensators can be
calculated beforehand in terms of the row powers of the closed-loop denominator and the McMillan
degree of the plant.
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