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Given a right coprime MFD of a strictly proper plaR(s) = Nr(s)Dgr(s) 1 with Dr(s) column proper

a dmple numerical algorithm is derived for the computation of all polynomial soluighgs), Y| (s)] of

the polynomial matrix Diophantine equatiof) (S)DR(S) + YL (S)NR(S) = D¢ (s) which give rise to the
class®(P, D¢) of proper compensatof3(s) := XL(s)*lYL (s) that when employed in a unity feedback
loop, result in closed-loop systen®P, C) with a desired denominatddc (s). The parametrization of

the proper compensato&ys) € ¢(P, D¢) is obtained and the number of independent parameters in the
parametrization is given.

Keywords: linear multivariable control; coprime factorizations; diophantine euqations.

1. Introduction

We consider linear, time invariant, multivariable systems which are assumed to be free of unstable
hidden modes, whose input—output relation is described by a strictly proper transfer function matrix
P(s) (the plant). In this note we describe a numerically efficient algorithm for the computation of
the class of proper compensat@ss) which, when employed in the unity feedback loop of Fig. 1,
gives rise to a closed-loop syste®P, C) with a specific closed-loop denominatog (s) (Rosenbrock

& Hayton, 1978; Kucera, 1970). In particular, given a right coprime MFD of a strictly proper plant
P(s) = NRr(S)Dgr(s)~! with Dr(s) column proper (column reduced) and an appropriately defined
polynomial matrixDc (s) with desired zeros, we extend the (Wolovich, 1974) resultant theorem and a
theorem by Callier & Desoer (1982), Callier (2001) and Kucera & Zagalak (1999) in order to obtain
an algorithm for the computation of all polynomial solutidn§_(s), Y (s)] of the polynomial matrix
Diophantine equation

XL(S)DR(S) + YL(S)NR(S) = Dc(s) 1)

which give rise to the clas®(P, Dc) of proper compensatoi§(s) := X (s)~1Y_(s) that result

in closed-loop system$(P, C) with Dc(s) as their closed-loop denominator. The issues of the
parametrization of the proper compensat@¢s) € ¢(P, Dc) and the number of independent
parameters in the parametrization are also resolved. This is done by investigating the properties of a
generalized version of Wolovich’s resultant to obtain a series of new results regarding its algebraic
structure. Despite the fact that similar results for Sylvester-type resultants have been presented in
Bitmeadet al. (1978), the Wolovich resultant has not received the expected attention, except perhaps
by Wolovich (1974) and Hayton (1980) where Wolovich’s resultant is used as a tool for testing the
coprimeness of polynomial matrices.
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The method presented here can be compared to the one in Antsaklis & Gao (1993), where Wolovich’s
resultant is employed as a tool for the construction of the interpolation matrix. However, our method
requires only knowledge of the coefficients of the polynomial matridgss), Nr(s) and provides a
parametrization of all proper denominator assigning controllers, unifying in this way the ‘resultant’
approach with the approaches in Callier & Desoer (1982), Callier (2001) and Kucera & Zagalak (1999).
The proposed approach can be viewed as a generalization of the method presented in Antsaklis & Michel
(1997, Theorem 2.13, p. 547) where the solution of a degree-specific Diophantine equation is obtained
using Wolovich’s resultant. Furthermore, through the investigation of the rank of the generalized
Wolovich resultant, we establish the lower bound for the (McMillan) degree of an arbitrary closed-
loop denominator, a fact which has been used throughout the constructions in Callier & Desoer (1982),
Callier (2001) and Kucera & Zagalak (1999), but not justified via some theoretic argument.

2. Preliminaries

In the followingR, C, R(s), R[s] , Ry (8), Rpo(S) are respectively the fields oéal numbers, complex
numbers, real rational functions, the rings ofpolynomials, proper rational andstrictly proper rational
functions all with coefficients iR and indeterminats. For a setF, FP*™ denotes the set op x
m matrices with entries iff. N* is the set of positive integers. th ¢ N* thenm denotes the set
{1, 2,..., m}. Finally 8 [-] denotes the McMillan degree pf

Let NRr(s) € R[s]P*™, Dgr(s) € R[s]™™M be a pair of polynomial matrices witBr(s) invertible
for almost everys € C and define the compound matrix(s) := [Dg(s), Ng(s)]T. Respectively
let DL(S) € R[S]P*P, NL(s) € R[s]P*™ (with D_(s) invertible for a.e.s € C) and E(s) :=
[—NL(s), DL(s)] such that

E(s)F(s) = 0. )

The pair of matrice®Nr(s), Dr(s) (resp.NL(s), D (s)) will be called right (resp. left) coprime iff (s)
has full column rank (resge(s) has full row rank) for everg € C. Itisknown that ifNr(s), Dr(s) are
right coprime andNy (s), D (s) left coprime, then

deg|DRr(s)| = deg|Dy (). 3

A polynomial matrixX (s) € R[s]P*™(m < p) is called column proper or column reduced iff its highest
column coefficient matrix denoted"™, which is formed by the coefficients of the highest degrees of
in each column ofX(s), has full column rank. The column degrees Xfs) are usually denoted by
deg; X(s), i € m. RespectivelyY(s) € R[s]P*™ (p < m) is called row proper or row reduced iff
YT (s) is column proper and the row degreesYag) are denoted by degY(s),i € p. Furthermore, a
square polynomial matriX (s) € R[s]™*™M is called row-column reduced (Callier & Desoer, 1982) with
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row powersr; and column powers;, i € m iff the matrix diags™" } X (s)diag{s~ %} is biproper (i.e. it
iem iem
is proper and its inverse exists and it is proper as well).

LEMMA 1 (Vardulakis, 1991; Corollary 3.100, p. 144) Xf(s) € R[s]P*™ (p > m) is column proper
then X (s) has no zeros at infinity and its (ordered) column degrees are the orders of its poles at infinity
ie. if

diag{s®, s%, ..., s%m}
0p—m,m

$O($:[

is the Smith—McMillan form ofX(s) at infinity, withq; > g2 > --- > dm > 0O, theng, = deg; X(s),
i € m. Furthermore, sinc& (s) (as polynomial matrix) has no finite poles and dus%ohas (possibly)
only poles at infinitygy X (s) = Zim=1 deg; X(s).

Obviously a similar result holds for row proper matrices.

When (2) is satisfied an#(s) is row proper withD| (s), NL_(s) left coprime, E(s) is a minimal
polynomial basis of the (rational) vector space spanning the left kernEk®)ff and the row degrees
deg; E(s) =: ui, i € p of E(s) are the invariant row minimal (dual) dynamical indices of

P(s) = Nr(S)Dg'(s) = DM (NL(S). 4
In such a case it is known (Forney, 1975) tkas) has the following properties:

1. if ps)T e R[s]¥*(PtM is a polynomial vector such thai(s)" F(s) = 0 then there exists a
polynomial vector(s) " = [w1(S), wa(S), .. ., wp(s)] € R[s]¥*P such that

ps) " = w(s) E(s); (5)
2. if p(s)" = w(s)TE(s) then
degp(s)’ = rpe%ﬂdegwi (S) + ui - (6)

The following result establishes a relation between the McMillan degred3(®)f and E(s) (or
F(s)).

LEMMA 2 (Vardulakis, 1991; p. 140) IE(s) has no zeros i€ U {oo} (equiv. DL (s), NL(s) are left
coprime inC U {oo}) then

ImP(s) = dmE(S). (1)
WhenE(s) is a minimal polynomial basis of the left kernel B{s), i.e. E(s) has no zeros ift and

is row proper, by Lemma E(s) will have no zeros inC U {oco} and thus, from the last statement of
Lemmal,

p
SmP(s) =mE(s) = ) deg; E(s). (8)
i=1



COMPUTATION AND PARAMETRIZATION OF PROPER DENOMINATOR 15

Furthermore, if alsdRr(s), Nr(S) are right coprime andF (s) is column proper then again, from
Lemmata 1 and 2,

m
SmP(s) = SmF(s) = ) deg; F(s), 9)
i=1
thus in such a case we get the well known result (Forney, 1975) that
P m
> “deg; E(s) = ) _deg; F(s). (10)
i=1 i=1

3. Generalized Wolovich resultant

Letki = deg; F(s),i € m be the column degrees &f(s) and similarly to Wolovich (1974, p. 242) for
k > 1 define the(m + p)k x m polynomial matrixXy(s) via

Im+p F(s)
S|m+p sk (s)
DRr(s) Dr(s)
Xk(8) := S = . = . 11
(© =50 | gi | e an
(M+p)x
K myp mpyam sk=1F(s)
(M+p)kx (M+p) (M+pkxm
and notice thaXk(s) can be written as
1
S
Xk(s) = Mek | block diag . =: Mek Sk (S) (12)
iem .
Ski+k—Z|.
(ﬁ ki+mk)><m
i=1

whereMg € RM+Pkx(mk+31 k) Notice thatMex does not coincide with the one in Wolovich (1974)
since Wolovich assumes thBir(s) is column proper andP(s) = NR(S)Dgl(s) is proper. Apart from
that, essentially the two matrices differ only up to row permutations.

One of our goals is to describe the left null space (kernegf which in what follows is denoted
by

KerMg, = (x| e RXMPk. 5y TMy = 0). (13)
The following theorem determines the dimension oﬂ\K§{.

THEOREM3 Let Ngr(s) € R[s]P*™ Dgr(s) € R[s]™™ be a pair of polynomial matrices with
rankgs) [DR(S), NFI(S)]T = m. Let alsoP(s) = NR(S)Dgl(S) e R(S)P*M, ui,i e p be the invariant
row minimal dynamical indices dP(s) andMe, € RMPkx(Mk+3 k) a5 defined in (12). Then

dimg kerMg, = > (K — pi). (14)
i <k
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Proof. The proof is identical to that of Theorem 1 in Bitmeaidl. (1978). O

It is interesting to notice that the dimension of the kernel obtained here is identical to the one given
in Theorem 1 in Bitmeadt al. (1978), despite the fact that the generalized Sylvester resi8taint
Bitmeadet al. (1978) does not coincide in general withy. Notice also that the above result does not
requireDR(s), NRr(s) to be right coprime nobr(s) to be column proper. We give now a generalization
of the result that appears in Antsaklis & Gao (1993, Lemma 3.2), in the sense that wé>(g)ax
NR(s)Dgl(s) from the properness requirement as well as from the assumptio®¢@) is column
proper.

COROLLARY 4 Under the assumptions of Theorem 3, we have

rankMex = (p+mk — » (k— ). (15)
i:pi <k

Furthermore, ik is chosen s.kk > u, wherepu = max{u;} then
lep

rankMex = mK + 8y P(S). (16)

Proof. Equation (15) follows simply from the fact that raliy = (p + m)k — dimg ker MeTk and (14).
Now for k > u, (15) becomes raex = (p + m)k — Zipzl(k — wj) or equivalently ranMeg =
mk + 3P, ui, thus (16) follows from the facty""_, i = smE(S) = dmP(s) in Lemmata 1 and 2

Notice that in the case th&8r(s) is column proper ané(s) := NR(s) Dgl(s) is propersm P(s) =
{# of poles of P(s) in C} = deg|Dgr(s)|. Therefore, fork > u the above result coincides with the
result of Lemma 3.2 in Antsaklis & Gao (1993). The following corollary provides a generalization of
the corresponding result in Wolovich (1974, p. 242).

COROLLARY 5 Let Nr(s) € R[s]P*™ Dgr(s) € R[s]™™M be a pair of polynomial matrices with
F(s) = [Dg(s), Ng(s)]T column proper with column degrees deg(s) = ki, i € m. Then
NRr(s), Dr(s) are right coprime inC iff Mg has full column rank folk > wu, or equivalently if
F(s) = [Dg(s), Ng(s)]T is column proper theMNRr(s), Dr(S) are right corpime irC iff for k > pu,
rankMex = mKk + 8y F ().

Proof. First notice that from (12) the number of columnaMig is mk+ Zimzl ki. SinceF(s) is column
proper it has no zeros at infinity and from Lemm{f=1 ki = ém F(s). Hence the number of columns
in Mek ismk + 8 F(S).

(=) Let Nr(s), Dr(s) be right coprime irC. Then from Corollary 4 fok > u, rankMegx = km +
Sm P(s). Since F(s) is column proper from Lemma 1 it has no zeros at infinity, thtg(s), Dr(S)
are right coprime as = oo. HenceNRg(s), Dr(s) are right coprime irC U {oo}, thus from Lemma 2
SmP(s) =8umF(s) and raniMeg = km + S F(S).

(«) Assume thalNg(s), Dr(s) are not right coprime irC. Then there exists & x € R™ ! and
S € C such thatF (sp)x = 0. In view of (12)

Xk(S0)X = Mek Sk (sp)x = 0

henceMgk does not have full column rank. O
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The following remark establishes the fact thédx can have full column rank only fde > .

REMARK 6 Let Dr(s) € R[s]™™M, Ngr(s) € R[s]P*™ such thatDg(s), Nr(s) be right coprime inC
andF(s) = [Dg(s), N,g(s)]T be column proper with column degrees deg(s) = ki, i € m. Let also
ui, 1 € p be the left minimal indices of (s) and defingu = max{u;}. Then fork < u

lep

m
rankMex < mk + ) "k (17)
i=1

i.e. Mgk cannot have full column rank fde < .

Proof. Assumek < u and leta be the number ofi; satisfyingu; > k. Itiseasy to see that

ka< > i (18)

i:pi>k

Using the fact thab " , ui = Dok Mt D <k i We can write (18) aka + Y., <k ii <
>-P | wi or equivalently as

p
pk—k(p—a)+ > wi<) ui (19)
=

iz <K
Notice that the number of terms Ei:m <k Mi is exactlyp — a, thus we can write (19) as

p
pk — Z(k—ui)<ZMi- (20)

i <k i=1

Addingmk on both sides of (20) we getn+ p)k — > ;. <, (K—pi) < mk+ Zipzl i where obviously
the left-hand side is rale and Zipzl Ui = Zim:l ki due to the assumptions of coprimeness (of
DRr(s), Nr(s) in C) and the column propernessbfs) (see 10). Thus (17) follows.

The above result has a direct implication on the choice of the row degré&xs(ef in (1) which will
be discussed in the following section.

4. Application to matrix Diophantine equations
Consider a strictly proper linear multivariable plaRi(s) € Rpo(s)P*™ with m inputs andp outputs
and let

P(s) = NRr(S)Dr(s) "t = DL(5) "IN () (21)

be respectively right and left coprime MFDs Bfs) with Nr(s) € R[s]P*™ and Dr(s) € R[s]™™M

and column proper with column degrees degrgi(S) = ki, i € m, NL(S) € R[s]P*M andD_(s) €

R[s]P*Pand row proper with row degrees deB.;i(s) = ui, i € p. Defineu := max{u;} (the
iep

observability index ofP(s)).
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The problem of assigning the denominator of the closed-loop system using unity feedback and a
dynamic precompensat@(s) € R(s)™ P can be reduced to the solution of the polynomial matrix
Diophantine equation of the form

XL(S)DR(s) + YL(S)NR(S) = Dc(s) (22)

where Dc(s) € R[s]™™ is the desired closed-loop denominator matrix aXd(s) e
R[s]™M™M, YL (s) € R[s]™Pis aleft (not necessarily coprime) MFD 6f(s), i.e.

C(s) = XL(91YL(5) € R(5)™P. (23)

It is well known that (22) has a solution for arbitraBc (s) iff Dr(s), Nr(S) are right coprime.
Furthermore, ifX| (), YL () is a particular solution of (22) then every pair of the fodn (s) =
XL(S)+T(S)NL(8), YL(S) = YL(s)— T(s)D(s) is also a solution of (22) for any arbitrary polynomial
matrix T (s) € R[s]™*P.

However, the question usually posed is under what conditions (22) can have solutions that give rise to
aproper compensato€(s) € Ry (s)™P. For a particular type of closed-loop denominator this problem
has been studied and solved by several authors (see Rosenbrock & Hayton, 1978; Emre, 1980; Callier
& Desoer, 1982; Kucera, 1970) and a parametrization of all possible proper denominator assigning
compensators has been given (see Kucera & Zagalak, 1999; Callier, 2001). According to this approach
the desired denominator is chosen to be row-column reduced with particular row and column powers in
order to be able to apply degree control on the numerator and denomin&¢s)of

The contribution of the present paper is to provide a numerical algorithm which employs Wolovich’s
resultant proposed in the previous section to obtain a parametrization of all denominator assigning proper
compensators. LeX| (S), YL (S) be a solution of (22) for a particular choice Bt (s) and letk — 1 be
the maximum degree of occurring amongst the elements of the matfixs) := [ XL (S), YL(S)] €
R [s]™(M+P) Then(s) can be written as

2(s) = 2&(®) (24)
where? € R™K(P+M andS(s) is as defined in (11). Then (22) can be written as
2kMekSx(s) = Dc(s) (25)

with S«(s) defined if (12). Comparing the degrees ®fin both sides of (25) it is easily seen
that deg; Dc(s) < ki + k — 1,i € m thus Dc(s) can be written aDc(S) = DxS«(S), Dk
e R (X1 ki+mk) and (25) becomes

2kMek Sk () = Dk S() (26)
or equivalently
2«Mg = Dg (27)

since (26) must hold for every € C. Thus every solution of (22) can be determined from a set of
numerical equations of the form (27) given the maximum degre@(sj and selecting the appropriate
K.

The following lemma can be found in Kucera & Zagalak (1999) stated for the dual of (22), i.e. for
a left MFD of P(s). For our purposes we shall state the corresponding assumptions and the result for a
right MFD of P(s).
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LEMMA 7 (Kucera & Zagalak, 1999; Lemma 2) Consider (22) under the following assumptions:

DRr(s) is column proper with column degrelgs= deg; Dr(s),i € m,

DRr(s), Nr(s) are right coprime,

P(s) = D' (S)NR(S) = Ny (s)D }(s) is strictly proper,

NL(s), Dy (s) are left coprime,

Dy (s) is row proper with row degregs; = deg; D (S),i € p and defingx = rp%x{m 1
€

o arwbdpE

Dc(s) is both row and column reduced with de@®c(s) = deg; Dc(s) = ki + & ,i € m where
& areintegerss.g > u—1,i e m.

If XL(S), YL(S) is a solution of (22) an€(s) = X[l(s)Y(S) € Rpr (s) then X (s) is row proper
with row degrees degX (s) = &,i e m.

Notice that if X (s)~1Y(s) € Rpr (5)™*P then the row degrees of (s) cannot exceed;, i.e.
deg; YL(S) < &,i € m (Kailath, 1980; Callier & Desoer, 1982), thus the maximum degree oitthe
row of 2(s) = [ XL(S), YL()] will be & . Denote the rows of2(s) by o (s) € R[s]>*MP) i e m.
Write

&i )
a)iT(S) = Za)iTjSJ, a),TJ e RX(MEP) i e m (28)
j=0
and define the row vectots' = [w;h, o/ ~--’wi2] e RBX(PHMGE+D j ¢ m.

Now let diT(s),i € m be the rows ofDc(s) and using assumption 6 of Lemma 7 defﬁg IS
RUME+D+E0K § ¢ m from the relation

47 =0 Sg+n(©.iem (29)
whereSy +1) is the(m(& + 1) + Y|, ki) x m matrix defined in (12).

THEOREM8 Let the assumptions 1-6 of Lemma 7 hold. Then every solution ¥ais), Y_(s) of
(22) such thaC(s) = X_(s)1YL(s) € R?,Xp(s) can be obtained from the solutions of the numerical
equations

_ ——T .
@ Meg, =0 . 1em (30)

and vice versa: that is, every soluti@ﬁ of (30) gives rises via (28) to &(s) = [ X.(S), YL(9)], s.t.
C(s) = XL(97IYL(s) e Ry P(s).

Proof. First notice that (30) are always solvable for arbitrtTnT/ since& + 1 > u and thus from
Lemma 5 in conjunction with assumptions 1-2 of Lemmid g, +-1) has full column rank.

If XL (s), YL(S) is a solution of (22) and([l(s)YL (s) is proper according to Lemma 7 the row
degrees of2(s) will be & and thus we can writeiT(s) asin (28). It is easy to see that the corresponding
o, will satisfy (30).

Conversely, if @ satisfy (30) then post-multiplying (30) by SE+p(S)  gives

|
— T . .
@ Me(e 1) S +1)(9) = Gi - Seg+1)(S), i € m or equivalently from (12)

@, S +1)(9) [ﬁggg] =d'(s),iem
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which equivalently gives

D .
o (9) [Ngg} —d'(s),i em. (31)

Obviously 2(s) = [wI(s),w}(s),...,w%(s)]T satisfies (22) and deg2(s) < &,i € m. Hence
deg; X(s) < & anddeg; Y(S) < &,i em.

Now let A (s) = diag{s't, s, ..., s*m}, A¢(s) = diag(st, %2, ..., $m} and pre- and post-multiply
(22) respectively byls (s)~ and Ax(s) ! to get

A (9)TIXL(S)DR(S) Ak(8) L 4 A (9) LYL(SNR(9) Ak(9) 1 = A (9) " *Dc(9)Ak(9)™L.  (32)

Since Dr(s) is column proper with column degre&s, Dr(s)Ax(s)~! is biproper. Similarly, since
Dc(s) is row and column reduced with row powefisand column powerk;, Ag ()" IDc(s) Ak(s) L
is also biproper. Using the fact th&(s) is strictly proper,Ax(s) is column proper and dggNRr(s) <
ki,i € mitfollows thatNg(s) Ax(s) 1 is strictly proper. Finally, since dggX(s) < & anddeg Y(s) <
&,i em, Ag(s)*lXL(s) and/l,;(s)*lYL(s) are proper in general. Thus taking limits for—~ oo on
both sides of (32) we obtain the equation

hr nhc __ ~hrc
X" D = DX

where XEr is the highest row degree coefficient matrix Xf (s), D*F‘f is the highest column degree
coefficient matrix ofDgr(s) and Dgrc is the highest row—column power coefficient matrix BE (S).
ObviouslyX!" is invertible sinceD!', DY © are invertible. HenceX (s) is row proper with row degrees
& and since degY(s) < &,i em, XL YL (s) € Rpr (s) is proper. O

The above result allows us to determine the number of independent parameters in the parametrization
of all proper denominator assigning compensators for a strictly proper plant, in terms the McMillan
degree of the plant, the number of inputs and outputs and the particular chégjce of

COROLLARY 9 Let assumptions 1-6 of Lemma 7 hold. Then the number of independent parameters in
the parametrization of all denominator assigning proper compensators is

m
v=m(p—mPE)+pYy & (33)
i=1

Proof. Using the result of Theorem 8, the degrees of freedom in the cho'to§(<sb is essentially equal
to the dimension of the left kernel g +-1). Thus the total number of independent parameters will be
v =31, dimg kerMe(; +1). Now sincei + 1> u, dimg kerMeg; +1) = Y. _; (& + 1 — j). Thus

m p m p
V= Y G H+Ll-pu)=mp+pYy & -—my p
. 2

i=1j=1 =1
which using the fact thaty P(s) = JP:l,u,- gives (33).

Notice that in case we choo§e= & = - - = &y, := &, we do not need to solve (30) independently
for each row, but we can use one resultant, nanviy 1 1), to determine all row&)iT(s). Insuch a case
the number of independent parameters in the parametrization wilkben(p(& + 1) — dm P(s)).
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Although Theorem 8 provides a way to reduce the computation of proper compensators to the
solution of a set of numerical equations of the form (30), we can go a step further and propose a
method that reduces the problem to a single numerical equation. This can be done by exploiting the
shift-invariant form of the generalized Wolovich resultant and using Gaussian elimination.

Letiy,ip, ..., im be indices such th&, < &, < --- < §,,. Letalso§ := &, = ?lﬁqx{si}. In order

to solve (30) fori = i; we can apply Gaussian elimination on the column$/gfz, 1) to obtain the
reduced column echelon forRe(; +1). Due to the shift-invariant form of the resuitant, the columns of
Me(, +1) appear in the firstp+m)é&;, rows 0fMe(§i2+1) (together withm zero columns). SincMe@ilJrl)

has full column rank, the reduced column echelon forrvigf;, 1) will have the block triangular form

. 0
Re(éi2+1) = [Regifl) le] .

Proceeding inductively it is easy to see tlﬁleiHm) will also have a similar block triangular form

Ree +1) 0
Re - 1 :[ j
D Qi1 Qj2
for j = 1,2,...,m — 1. Thus, reducingMe 1) into column echelon form essentially provides a

solution to all (30) sincéRe(z+1y consists of blocks that give successivélé(giﬁl), jem.
In the light of the above analysis we provide the following algorithm:

e Step 1. Obtain a right coprime MFBIRr(s) € R[s]P*™, Dr(s) € R[s]™™ of P(s) with Dgr(S)
column proper with column degrees deBr(s) = ki, i € m.

e Step 2. Determine the minimukfor which Mg has full column rank. Thepw = k and choose
E>pn—21iem.

e Step 3. Using (12) construct the generalized Wolovich resuligt, 1) whereé = max{&;}.
lrem

e Step 4. Choos®¢(s) eR [s]™M to be row and column_reduced with column powlgrsand row
powers; and construcD 1) by decomposindc(s) = De41) Se+1)(S) as in (26).

- M
e Step 5. Construct the compound mathibg ;1) = [ —E(““]

D4y

e Step 6. ReducM (1) into column echelon form to obtaiRe +1) = [Zeg:i; ]

e Step 7. Compute the (general) solution for each @Wfor i = 1,2,..., m, using the first(& +
1)(p + m) rows of Re(+1) and theith row of Z¢, 1) (discarding the lastt — & )m columns on both
matrices because they contain only zeros).

e Step 8. Using (28) calculata (s) of 2(s) fromw;” fori =1,2,...,m.

Notice that the above method does not require calculation of a left coprime MFI)ffor the
parametrization of solutions as in Kucera & Zagalak (1999) or Callier (2001) nor the computation of
a Y-minimal particular solution as in Kucera & Zagalak (1999). The only information that affects the
choice of the closed-loop denominator is the observability inde P(s) which can be determined
using rank tests oMg for successive choices &f= 1, 2, 3, ..., since due to Remark @, is equal to
the minimumk for which Mg has full column rank. This fact justifies the choice of the lower bound for
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the row powersg; of the desired closed-loop denominator. In the previous section we showéd:that

is a necessary and sufficient condition (provided ats), Nr(s) are coprime andgr(s) is column
proper) in order foMg to have full column rank, imposing this way the lower bound for the choiég of

that make (30) solvable for arbitrary choice of the right-hand side matrix. This lower bound on the choice
of & has been used in the past but has not been justified via theoretic argumerd. With— 1,1 € m,

the McMillan degree of the controlléE(s) = X (s)~1YL(s), is genericalydyC(s) = m(u — 1).
However, there might be cases wh¥in(s), Y (s) turn out to have a left (non-unimodular) common
divisor, giving rise to & (s) with McMillan degreesy C(s) < m(u — 1).

We should also notice that the Gaussian elimination method has been chosen here only for
simplicity of presentation. The above algorithm can be applied equally well using unitary Householder
transformations to reducklee 1) to a lower (block) triangular form, which performs better from a
numerical point of view.

We demonstrate the above procedure via the following example (the plant and MFDs appear in the
example in Callier (2001) but the desired closed-loop denominator has been changed in order to illustrate
the method fog; # &7).

EXAMPLE 10 Let
s+1 0
P(S) — S(SIZ) 1
s(s—1) s—1

with
_[s?-2s 0 _[s+1 0
DR(S)—[ 1 5_1] NR(S)—[ 1 1]

so thatky = 2, ko = 1 andsy P(s) = ki + ko = 3. The observability index oP(s) is u = 2, since it
can be easily seen thite; does not have full column rank whilde, does. Let the desired closed-loop
denominator polynomial matrix be

Dc(s) = diag(s® + 8% + 24s + 32, 5% + 155° + 625 + 48}

with& = 1,& = 2,& = max§} = 2. We should expect the parametrization of all proper compensators
giving rise toD¢(s) to havem(p — sm P(s)) + pZim:l & = 4 independent parameters. Create the
generalized Wolovich resultant far= ¢ + 1 = 3:

0 -2 1 0 0 0 0 0 0
10 0 0 0-1 1 0 0
11 0 0 00 0 0 O
1.0 0 0 01 0 0 O
00 -2 1.0 0 0 0 0
0O 1 0 0 0 0 -1 1 0 1200
Ms=1o 17 1 0 oo o o o€k
0O 1 0 0 00 1 0 O
0O 0 0 210 0 0 O
0O 0 1 0 0 0 0 -1 1
00 1 1 00 0 0 O
0o 0 1 000 0 1 O
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Write D¢ (s) in terms of its coefficients as follows:

Dc(s) = D3Ss(S)

8100 0 O
0O 000 0 48 62 15 (135‘3(5)'

Now define the compound matrM ez = [ %933] and apply Gaussian elimination on the column$/eg
to obtain the column echelon form which is

0

o

[cNeoNoNoN el

Re3 =

|
N

[oNeoNe]

1
0
0
0
0
0
1
0
0
0
1
0

&mon—xoo' Ococoocooocor
) |

BolFPFoooQorooooo
%-bl—\l\)OOHI—‘OOOOOO
oo0olcocorocoocoocoocoooo

78 —204 1

P OlO0OrO0OO0O0O0O0 00O
I
1
5§
w
| IS

whereRez € R12%9, A3 € R2*9. To determinew] (s) take the first(p + m)(€1 + 1) = 8 rows of Reg
as well as the first row of\3 discarding the last two columns on both matrices. This corresponds to the
reduced echelon form of (30) for= 1, i.e.

0

—[6 032 010 3

|

_|
[cNeoNoNeoNeNoll ol
[cNoNoNeol Nele]
RPOOORFR,OOO
OO OPFrOO0OO0OO0o

coorOoOOOOO
PP OO0 O0O0OQg

P OOOOOLPR

-1

|
N

whose general solution is
@ =603 0104 0+[1 -1 2 -1 0 0 -1 1t
wheret; € R. Thus, from (28),

wl () =[s+6+t1 —ti (4—t)s+32+2 tis—1ty].
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Accordingly, to determin@;(s) take the first(p + m)(&2 + 1) = 12 rows of Reg as well as the
second row ofA3. This corresponds to the reduced echelon form of (30) fer2, i.e.

1 0 0000000
0 1 0000000
0 0 1 000000
0 00100000
0 0 0010000
50 o o ool odl=[63 78 204 126 0 B 62 0 1
11 -2100100
0 000000T10
0 0 0000001
1 00010200
(001 210110 0

whose general solution is

6;:[—63 78 —-204 126 0 16 62 0 0 1 O 0]

1 -1 2 -1 0 0 -110000
+[t 3 4] -1 0 0 0 -1 0 -2 00 0 1 0
0 -1 2 -1 0 -1 -10000 1

wherety, t3, t4 € R. Thus, from (28),

wy(S) =[-63+1tr —t3—sts 78—ty —ta+S(16—tg) + 2
—204+ 2ty + 2t4 + (62—t — 2t3 — tg) + S°t3  126—tp — tg + Stp + S%ta] .

.
Now £2(s) = [XL(S), YL(S)] = Z#EZ , thus the parametrization of all proper compensators is
2
_ S+6+4+1; —t1
Xi(s) = [—63+ to—t3—St3 78—ty —ts4 +S(16—tg) + sz}
YL(s) = (4—t1)s+ 32+ 2t 11s—t1
LS = 204+ 2ty + 2ty + S(62 — tp — 2t3 — tg) + SPty  126—tp — tg + Sty + S2ty

for free parameters, to, t3, t4 € R. Notice that the number of parameters is the expected one, i.e. 4.
Obviously X, (s) is row proper with row degrees 2 while the corresponding row degreesYef(s) do
not exceed 12. ThusX[l(s)YL (s) is proper. O

5. Conclusions

In this paper we have investigated the problem of the determination of a proper denominator assigning
compensator for the class of strictly proper linear multivariable plants. Our approach focuses on
the numerical computation of the coefficients of the polynomial matrices that describe the dynamic
compensator and a parametrization of all such compensators corresponding to the one in Kucera &
Zagalak (1999) and Callier (2001) has been provided.
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The suggested method utilizes a generalized version of the resultant attributed to Wolovich (see
Wolovich, 1974) whose structural properties surprisingly have not been studied in detail. In the light
of the results presented in Section 3 the generalized Wolovich resultant is proved to be the ideal tool
for handling polynomial matrix Diophantine equations when degree control of the solution is required.
The entire procedure is reduced to the computation of a solution of a set of numerical equations and the
determination of the left kernel of the generalized Wolovich resultant. Furthermore, our analysis shows
that the number of independent parameters in the parametrization of all proper compensators can be
calculated beforehand in terms of the row powers of the closed-loop denominator and the McMillan
degree of the plant.
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