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Abstract

A classification of the solutions of linear, time invari-
ant non-regular, discrete descriptor systems is given in
terms of the structural invariants of the associated ma-
trix pencil 0F — A. The lack of conditionability (in
the general case) implies a partitioning of the behavior
and thus a classification of the solutions according to
their boundary values. A generalization of the bound-
ary mapping equation is also given.
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1 Introduction

In this paper we investigate the solution space of "non-
regular”, discrete-time, homogeneous descriptor sys-
tems described by

Expyy = Ay

where F, A are in general constant, non-square, real
matrices. The term ”non-regular” is used throughout
this paper to distinguish this general case from the reg-
ular one, i.e. the case where E, A are both square with
det(cE — A) # 0 for almost every o.

Non-regular descriptor systems are the natural frame-
work for many physical, social and economical systems.
We shall only mention some of them indicatively (for
more details on the applications see [6]). Non-square
systems occur in interconnected systems where no dis-
tinction between inputs and outputs is made. In eco-
nomics the Leontief model is in general a non-square
implicit system, while the square case corresponds to
a system where the number of goods produced equals
to the number of factories, which is rather an artifi-
cial case. Non-regular descriptor equations play also a
very important role in the study of the discrete Riccati
equation, where the associated Extended Hamiltonian
Pencil (EHP) (see [11], {10]) is involved.
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The regular case has been extensively studied by many
authors (see for example [1], [2], [3], [4], [5], 7] etc.)
and several approaches have been proposed. In all
these studies it shown that the initial conditions of
the descriptor equation cannot be arbitrarily chosen,
since this may result the system not to be well-posed.
Furthermore it is shown that if we restrict the time
interval from Z7 to a finite interval and place appro-
priate boundary conditions then the solution can be
uniquely characterized,. The non-causal nature of de-
scriptor systems can be expressed either through its
forward - backward decomposition [3], where the origi-
nal system is decomposed into the casual and the anti-
causal part or via the boundary mapping equation [2],
which plays the role of a generalized transition matrix
for singular equations.

From a behavioral point of view non-square descriptor
systems have been studied both in continuous and dis-
crete time (see e.g. [14], [12], [13]), but no attention
has been focussed on the role of the structure at in-
finity of the corresponding matrix pencil. As a result
in the discrete time case the behavioral approach does
not take into account the non-causal nature of singular
systems. This is because causality of the behavior is
an a priori assumption and consequently, Z¥ as time
domain, is the natural framework, in all these stud-
ies. Furthermore a fundamental distinction is made
between the system and its mathematical representa-
tion. According to the behavioral approach, the system
(see e.g. [12], [13]) is defined as the set of all possible
trajectories produced as outcomes from some particu-
lar physical, economical or social phenomenon. On the
other hand the mathematical representation of the sys-
tem may take several forms depending on the way we
choose to model it.

In this paper we follow an approach similar to that
in (1], [2], [3], [4], [8], [7], rather than the behavioral
one. Particularly, we examine the solutions of a given
non-regular descriptor equation without making any
assumptions of causality of the corresponding behavior.
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The notion of conditionabilty [1] is naturally extended
to the non-square case and plays a fundamental role in
the classification of the solutions.

2 Conditionabilty and Behavior

Consider the non-regular homogeneous descriptor
equation

E.’L’k_}.]_ = A.’L'k, k= 0, 1,2,...,N -1 (1)

where E,A € RP*™ are constant real matrices and
z, € R™, k = 0,1,2,...,N is the descriptor vector.
The above equation can be written in a more compact
form as

A E 0 - 0 2o
— . 1
0 A FE : ' =0 (2)
: . .0 :
0 --- 0 -A E TN
or equivalently
SxyZn =0 (3)

where Sy € RNP*(N+1)m i5 the matrix in the left hand
side of (3) and zy = [2],z],...,2]]T € RIN+Um Ty
[1] the matrix Sy is defined as the solvability matriz. In
the non=homogeneous case (1] where inputs are involved
the matrix Sy must have full row rank, in order for the
system to be solvable. However in the homogeneous
case we don't have to check for full row rank of Sy since
there are no input terms and equation (3) is always
solvable (in the worst case the system will have the
trivial solution z = 0). We introduce the set of all
solutions of (1)

B ={zy: Brpy1 = Az, k=0,1,2,...,.N — 1}

The notion of conditionabilty can be extended to the
non-regular case. Luenburger in [1] defines a solvable
system to be conditionable if any choice of (admissible)
boundary values zo, v ,characterizes uniquely the so-
lution for all the intermediate steps 21,%a2,...,Zx—1. In
the regular - time invariant case the system is always

conditionable.

In our case (1) the system is not in general con-
ditionable, which means that the boundary values
To,zy are not sufficient to determine the solution
x; € B uniquely. To see this consider two solu-
tions of (2) Zn, yn having the same boundary val-
ues zg,zy and probably different intermediate val-
ves, ie. zy = [2f,aT, . 2l _,,2%]T and gy =
(28, 9T, ...,g/;{}_l,m?\}]T, Then it is easy to see that the
difference Ty — gy = [0,27 — o7, ..., 2%, —y%_,,0/T

will also satisfy (2). Equation (2) now reduces to

' E 0 -~ 0 ]
-A E 0 [ T1-U1 ]
T2 — Y2
: . —-A FE l_ IN-1—YN-1 J
| 0 - 0 -—A ]

Obviously zj, =y, k= 1,2,..., N — 1 if and only if the
matrix in the left hand side of the above equation has
full column rank. This matrix is defined in [1] for the
regular case as the conditionabilty matriz. Similarly
we define the conditionabilty matrix of the non-regular
system to be

r B 0 0
-A E 0
CN — 0 0 ERNPX(N_I)m (4)
: . —A E
i 0 0 —A i

It is well known (see for example [9]) that regularity of
the matrix pencil 0 E— A implies full column rank of Ci
and hence conditionabilty of the corresponding system.
When the matrix pencil 0F — A is not regular then it
is possible to have an unconditionable system. This
would imply that there are non-trivial solutions even
when the boundary values xg, 2y are both zero. These
solutions will have the form Zy = [0,27,...,2%_;,0]7,
with [27,..., 2% _;]T € ker Cy.

On the other hand when we have a homogeneous au-
toregressive representation such as (1), it is natural
to expect that the solutions are triggered by non-zero
boundary values g, z . This leads to the following de-
finition

Definition 1 Two solutions of (1) (zk,yx) € B X B
are said to be “boundary” equivalent iff

@k —yi € [0] (8)

where [0} = {2, : 20 = 2y = 0, [Z;,---:ZJII\;—l]T €

ker Cy }.

It is a trivial task to verify that (5) defines an equiva-
lence relation between the solutions of (1). This equiv-
alence relation defines a partitioning of the behavior of
(1). It is natural to consider the solution space of (1)
as the set of equivalence classes of solutions, i.e.

B = B/[0] (6)

The vector space B consists of equivalence classes mod
[0] of the form [x] = {yk : Y& =z + 21, Y € B, 2k €



[0]} = z + [0]. The solution z; will be called a repre-
sentative of the class [a,k] Obviously when the system
is conditionable, [0] reduces to {0} and B = B.

In order to investigate the structure of B we use the well
known Kronecker form of the matrix pencil 6 E— A (see
for example [9]). A geometric characterization of B in
terms of proper and non-proper deflating subspaces, is
also possible but it will be avoided here for simplicity

reasons.

It is known that for every matrix pencil o F — A, with
E,A € RP*™_ there exist two invertible matrices U €
RP*P,V € R™*™ such that

[ol—Je O o o0

_ 0 oJo-I., 0O 0

UleE-A)V = 0 0  Lfo) O
| 0 0 0 Lyo) |

(7
where the matrix in the right-hand side of the above
equation is the Kronecker form of the original pencil.
The first block of the diagonal matrix corresponds to
the finite (generalized) eigenvalues of 0E — A and J¢
is considered to be in (real) Jordan form. Similarly
the second block corresponds to the infinite eigenval-
ues of the original pencil and Jy is a (nilpotent) ma-
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trix in Jordan an m with all its Qlagoiial €iCinenus cq'ua}
to zero. The third (fourth) block L.(o) (L,(0)) is a
block diagonal matrix consisting of smaller non-square
blocks L, (0), i = 1,2,..7 (Lp;(0),7 = 1,2,...,1) of
the form Le,(0) = oM, — Ne, (Ln,(0) = oML -

1 0 0
Ng:)with M, = IV P e ] € Rv*(+1) and
]_ 0 --- 1 0 J
I’ o 1 --- 0 ‘I
: € RV where v = ¢

l 0 --- 0 1
or v = 1;. The blocks L, (0) (Ly(0)) are the right
(left) Kronecker blocks and the indices €; (7;) are the
right (left) Kronecker indices of 0 & — A. Furthermore
lete=ST_ & (=i, M) and p = n+ pe4e+n-+1,

A — ) e ) st A b
e —feTHTCTIifT 7.

The following lemma will be very useful in the sequel

Lemma 1 Consider the generalized resultant matriz

(see [8]) of oE — A

-4 E 0 0]
S, = 0 —-A FE € RFpx(k+D)m
: . L0
[ 0 -+ 0 -A E J
®)
then rankS, = kp — Z (k — mi) where n;, i =
{ik>mi}

1,2,...,1 are the left Kronecker indices of cF — A.

Proof: The proof is straight forwa
L£1001:  Ln€ prooi 1s siral 5 tforward if we apply the-
orem I in [8}! for the pencil 0E — A. n

Now we can state the following

Theorem 2 For any long enough time interval,

71GITL s Fam AT~ LL
e

LTV ~
namely for N > Ny following hold

dimB =Nr+m-—n (9)

dim[0] = (N — 1) — ¢ (10)

where Nyin= max {e: + 1, mi}.
T=1,...,"
F=1rk

: In view of (‘7\ it is obvious that B is mgmgrp]

OO0l: S ob us that £ 18 180IY 1
Ker

Z (N“7b).Now for N > N, we have rankSy =
{3:N>n;}
Np— Z (N—-mn;) = Np—Nl+1. Thus dimker Sy =

J=1,..,l
(N + 1)ym —rankSy = Nr+m — . This proves that
At B — Aot _ Qi itanl 4 mncile asan +ha
IRt — IvYiI T Illo l’ Ullllllall)’ 1t ID Caally =i ¥ § UIIGU

[0] is isomorphic to ker Cy. Now applying the previous
lemma to

I' ET AT ... 0 'I
~T . . ~IN_1mx Nn
T=1 . i | e RW-imxNp
l_ 0 ET AT J
' (11)
we take rankCy = rankCl = (N—-1)m— Z (N-

AT~

L"v Y )C;r
1 — ¢;)where the right indices of ¢ET — AT are simply
the left indices of o E — A. Thus for N > N,in we take
rankCy = Nm—m— (N — 1)r + € and dimker Cy =
(N —1)m — rankCy = N7 — 7 — €. This proves that
dim{0] = Nr—r —e. =

In what follows it will be assumed that N > Nupin so
we can apply the results of the above theorem. We can
apply Luenberger’s method [2] in order to determine a
generalized boundary mapping equation for (1). The
boundary mapping equation in regular descriptor sys-
tems, is a generalization of the transition matrix in
state space systems. Namely the boundary mapping
equation gives the relation between the boundary val-

ues g and . Furthermore it summarizes the restric-
tions pr\\pr] ]'\v the svetem at both end noints of the

sl LIIC BYsuelnl al DOLIL Sl pOLhe O L3¢

time interval A =0,1,2,...,N.

! Actualy equation (2.4) in [8] has a typographical error. From
the proof of theorem 1 it is obvious that the correct formula is
rankSy = (r + g)k - Z (& — v;).

{ivi <k} :

".Cl
o



We apply row compression on Sy in (2) to keep only
the independent rows of Sy. This can be done by pre-
multiplying (2) by an appropriate (invertible) matrix
Fy € RPN*2N 55 follows

FiSyiy =0 (12)
Xo Cly Xn .
[ o 0 0 J”N =0 (13)

where

XO,XN = R(Np—NH-'r))Xm’ CIIV c R(Np-—Nl+nxm(N—1)
(recall that Np — NI+ 1 =rankSy and thus the ma-
trix [Xo, Cly, Xn] has full row rank) and the zeros are
zero matrices of appropriate dimensions. We can drop
the zero rows of the matrix in (13), since they play no
role in our system. Thus (13) reduces to

[Xo Cy Xwn ]:EN=O

Now the matrix C}, plays the role of the conditionabil-
ity matrix and obviously 'm'nkCV = rankCy . Thus
if we apply row compression in C}y (by premultiplying
C}; by an appropriate invertible matrix F;) we have

(19

noi- ¥}

where W € RINm-m=(N=Lr+e)x(N-1)m jg 5 fy]] row
rank matrix. Applying this in (14) we take

F{Xo Cy Xy ]En=0
X X o
A : Ty
: " : Tlzo0 ()
X X
Z() 0O --- 0 ZN TN

whoro tho number of rowe of both Zy, Zpy will be (N p—
Ni+n)—-(Nm-m—-(N—-1)r+¢ =n+p+2n
Furthermore the matrix [Zg, Z ] will have full row rank
since the matrix on the left-hand side of (15) has also
full row rank. The last block row of (15) gives rise to
the following

Theorem 3 For every (possibly) non-regular descrip-
tor system of the form (1) there exists a generalized
boundary mapping equation of the form
2o _

[Zo,ZN] [ Zy } =0 (16)
with [Zo, Zn]) € ROFHHIX2™ ond yrank[Zo, Zn] =
n + p -+ 2, which summarizes the restrictions posed
on g,z N by the system.

The above theorem gives a very important result. Ob-
viously [28,2%] can be chosen from ker[Zo, Zy] whose
dimension is

dimker [Zo, Zn] = 2m— (n+pu+2n) = n+p+2(e+r)
(17)

Thus there are exactly n+p+4-2(e+r) degrees of freedom
in the choice of zg, zy. It is natural to expect that this
will be also the dimension of B since its elements are
equivalence classes of solutions with the same bound-
ary conditions. This will be much more clear in the
following section.

3 Classification of the Solutions

The matrix pencil 0 E — 4 in the original equation (1)
can be considered without loss of generality to be in its
Kronecker form, since equation (1) can be transformed
to its "canonical” form by premultiplying by U and
taking a coordinate transformation of the descriptor
vector according to xp = Vig.

In this section for simplicity of notation we shall assume
that 0 E — A is already in its canonical form and no dis-
tinction will be made between £;, and z;. Furthermore
we assume that NV > Nj;,. In this case it is obvious
that the system can be decomposed to several subsys-
tems corresponding to the finite, infinite, right and left
Kronecker blocks. We note that we shall use the nota-
tion of the previous section for the vector spaces cor-
responding to each subsystem. In order to avoid con-
fusion of notation we shall distinguish them using the
indices C, 00, €;,7;. At this point it would be useful to
partition corresponding]y the decriptor vector as a:;, =

(@), @), @7, @), @), (@07]
Now (1) can be written equivalently as
g = Jouf (18)
Joolgy1 = Wk (19)
Mzl = Nz (20)
Mlz, = Npay (21)
fori=1,2,...,r, 4 = 1,2,...,l. The first two equations

(18),(19) are of no particular interest since, these two
parts correspond to a maximal forward F/B decompo-
sition of a regular system in [3]. The solutions can be
easily obtdined in terms of arbitrary initial and the final
values of x§,2% from the formulas z§ = J&z§ and
P = JN kg Accmdmgly we define the behav1or of
these two subsystems B = {2§ : 2§ = Jka§} and
Boo = {22 : 2 = JY~*2%}. Furthermore dim Bg =
n and dim Bo, = p since the columns of the corre-
sponding matrices Jg, JN-% are linearly independent
sequences. Obviously these two subsystems are condi-
tionable (they are regular descriptor systems) and thus

[0]c = {0}, Bc = B¢ and [0]s, = {0}, Boo = Bwo

We examine now the third group of equations (20). For
equation (20) define similarly the vector spaces B, and
[0]¢,. Then according to theorem 2 and if we take into
account that oM, + N, has only the right index ¢;,



we have
dimB., =N +¢+1 (22)
3:..[N] — N .. 1 199)
GliM|Vjeg; = 4V €4 i (<)
T - L I SRR (ot ~ N P
it 1s obvious thnat {Ule; & De;. In order to determine

the set of equivalence classes Be, = By, /[0]¢, of (20) we

need to find a representative for every non-zero equiva-
lence class. This is a relatively easy task if we consider
the following

T ---- 4 £ T £ € l‘i:l‘?s( 1) iz Tamdzz hlzal: z::idk
Lemma 4 If Jg; € 11‘ FUNTETTS 18 JOTAATY ULOCK WL
all its diagonal entries equal to zero then

M.,J., =N, and N.JI =M, (24)

Proof: The proof follows simply by straightforward
computation if we take into account the special form
of M,, Ne,, Je;- N

In view of (24) we can verify that M JE+!
N J® and N (JI)F = M. (JI)*for every k =
0,1,2,..., N —1, which means that the columns of both
JE, (JTYN=* satisfy (20). Furthermore these columns
are linearly independent solutions. 'This leads to the

following

{a5 s 2y = JEag} and B2 =
TN

}

Definition 2 Bs

{zi 2f =

kg

The indices f,b in the above defined subspaces stand
for *forward” and “backward” respectively. The sub-
space Bf contains solutions arising from the forward
p10pagat10n of the initial value x§', while Bb contains
solution moving in the opposite direction.

Lemma 5 dimBf =¢; +1 and dimB?, = ¢; + 1.

Proof: he proof is straightforward if we take into
PR 4ttt 4l amdiiinsie ~F otl. TR TT\N-=-k (...
aCCoOuUullL uilau viic bUlulllllE O1 00Ul o P \d ] y UL
k=0,1,2,...,N, are linearly independent solutions of
(20 T1 di 1__91 sion of both Rf Rb is equal to the

\=>¥7" =
dimension of J* or (JT N k wlnch is e+ 1. n

Theorem 6

=Bl ® B o0, (25)

Proof: Consider first a solution 2}/ such that 2}/ €
B! and 27}/ € B! then
3 L& { TT\N=Fk_.€; {5
Ty =Jde%g = Je,)T N (<b)

If we take into account that J* = (JI)* =0 for every
k > €;4-1 and the assumption that N > Npin > €; from
(26) we take 2% = JNaf =0and z§ = (JT)Nz% = 0.
Thus zj] = 0, f01 every k = 0,1,2,..., N. This iﬁroves
that Bef.- n Bé", = {0}and we can define

BI/®

=B£®Bg‘_ ={z;i :al.Zi __ka +(JT)N ko ei}

{97\
\Ql}.
Now it is easy to see that BZ/®n [0]€ = {0}. Indeed if
€ o pf/ and ,,,61 c Ife)} +har

Bl A UL g {V]e; viill

$ 4 -uo
(27) a:f: =0, for ¥k = 0,1,2,...,N. Now we can define
thea diraent snym Béf./b nl

VT AT L DUl = Qf Qb m ol If we
W Me; — Ué; TDUG @ |Vie;- L1 WO

take into account the dimensions of these subspaces we
have dim(B{, & B? @[0].,) = N +¢;+1 which coincides
with dim B, = N+¢;+1. Thus B, = Bf ® B? ®[0].,.
]

— MEI — 0N and frn
= I,y =V &0 irom

We introduce now the vector space of equivalence
classes mod [0], corresponding to (20)

Be, = Be, /[0, (28)

Theorem 7
é5i = (Bef, @ 'Bg,')/[o}fi = Bef‘-/[flfi GBBS.-/L]%:' (29)
dim B, = 2(¢; + 1) (30)
Prooft  Obvisusly B/ @ B2 C B,, which implies
(B{ ®BL)/[0]; € Be,/[0]¢, = Be' Now let [z} € B,

From ( 25) we can uniquely write 23 = y§' + 75 + 25
with yi' € BL g7 € Bb and zj' e [0]e Obvxously
] = v +795 + [0]6' which unphes that [zf] €
(BL ® BL)/[0]c;- Thus B., C (B @ B)/[0]c,. This
proves that B, = (Bf @ B%)/[0]c,. For the second
part of (29) we have Bf C B and Bb C B, and
obviously BL /0], + Bb /[0le; € Be,/ [O]E, Inversely
if [ay/] € Be, then according to the above unique de-
compoxition of 1,]" we have [:vh] = y P+ gy + (0], or
(251 = (wi +[0le,) + (@' +[0le,) € B /Me,TUi;’/Me,
Thus Be,/[0l; € BZ /0], + BL /[O]E, This proves
that Bs,/[O]s, = B{ /10e, + Bt /IOL . Furthermore it
is easy to see that Bf'_/[O]el n Bbi/[O]ei = [0]¢,. This
allows us to write B, = B /0], ® B? /{0],. In or-
der to prove (30) it is enough to see that the mapping
(Bl ® B2) 3 27 = [37] € B, is cleatly an isomor-
phism and thus dim B, = dim Bf +dim Bl = 2(¢;+1).
n

Applying these results to (20) for all i = 1,2,...,r we
define X
Be = B:/[0]. (31)

.
where B. = @ B, and [0 =
=1

sums are well defined because of the biock diagonal

@P[0]e, (these direct
i=1



structure of the Kronecker form). The previous the-

orem can be extended if we define B/ = EB Bf and

i=1

@ B?.. We have

=1

B.= (Bg ® BS)/[O]G (32)

dim B, = dim(Bf ®B?) =2 “(e;+1) = 2(e+7) (33)

i=1

We examine now the fourth group of equations (21).
Applying theorem 2 and the fact that the pencil O'Alg; -

ATT Vooc mialer 2t Tof 2o 3 o o o LT Al D —_ N2
lvn. nas omniy vhne I€n maex 7j; we tase dlill Dy, = U+

n; —n; = 0 and dim[0],; = 0. Hence B,, = {0} which
means that this part of the system has only the trivial

solution :LZ‘ =0,k=0,1,2,...,N. Extending this result

o 1 1 0 Q b 1 n i) — '
for all j = 1,2,3,...,1 we have B, = By, ={0;}.

D~ 8

i

J=1

Now that we have completed the investigation of the

solution space we recall the deﬁnition of B in (6) as

— Inl o fnl
Vic ® LUJoo @ Ve

®[0], = [0]c. It is a trivial task to see that the following
holds

l:llC beb Cqulvdlcllbb bldbjcb 1uuu lUJ

Theorem 8 B = (Bec ® Boo ® B! @ BY)/[0jand
dim B = dim(Bc ® Boo ® B ® BY) = n+ p+2(e + 7).

(LY

It is not surprising that dim B coincides with the num-
ber of degrees of freedom in the choice of boundary
values zo,zy in (16).

4 Conciusions

s AF i)
rigne

The lack of Luuuwlunauuwy due to the Preseince o1
Kronecker indices in the pencil 0 E — A, plays a crucial
role in the classification of the solutions of the non-
regular Exp1 = Axg. The set of solutions arising, from
zero boundary conditions xp = 2 = 0 is defined as the
zero equivalence class [0] and the set of all solutions B
is partitioned to equivalence classes having as elements
solutions with the same boundary values xg,xy. It has
been shown that the source of unconditionability and

trverial corn antivalones olaga
ol'ivial Z€ro equivance Ciass

o avyriaka af

hones +h PRSP [y
11IT1ILE UU.U €XISteiice GI 1iGh~

[0], are the right Kronecker indices.

The finite and infinite eigenvalue structure of the pen-
cil gives rise to forward and backward solutions respec-
tively, while the right indices give both forward and
backward solutions. On the other hand the left in-
dices glvc Uul) the trivial zero suxumuu resti mmng this
way the choice of boundary conditions of the complete

m1mf1nn

We should finaly notice that all the above results can be

easily expressed even when the matrix oF — A is not in

its canonical form, using the transformation matrices
U,V.
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