
A CLASSIFICATION OFTHE SOLUTIONS OF 
NON-REGULAR,DISCRETE-TIMEiDESCRIPTOR 

SYSTEMS 

S.Antoniout, .N.Karampetakist and A.Vardulakist 

+Aristotle University of Thessaloniki 
Dept. of Mathematics - Faculty of Sciences 

54006 - Thessaloniki - GREECE 
e-mail: antoniou@ccf.auth.gr, karampetakis@ccf.auth.gr, avardula@ccf.auth.gr 

Abstract 

A classification of the solutions of linear, time invari- 
ant non-regular, discrete descriptor systems is given in 
terms of the structural invariants of the associated ma- 
trix pencil aE - A. The lack of conditionability (in 
the general case) implies a partitioning of the behavior 
and thus a classification of the solutions according to 
their boundary values. A generalization of the bound- 
ary mapping equation is also given. 

Keywords: Descriptor Systems, Non-regular Sys- 
tems, Discrete time 

1 Introduction 

In this paper we investigate the solution space of “non- 
regular”, discrete-time, homogeneous descriptor sys- 
tems described by 

EzkC1 = Arck 

where E, A are in general constant, non-square, real 
matrices. The term “non-regular” is used throughout 
this paper to distinguish this general cease from the reg- 
ular one, i.e. the case where E, A are both square with 
det(aE - -4) # 0 for almost every 0. 

Non-regular descriptor systems are the natural frame- 
work for many physical, social and economical systems. 
We shall only mention some of them indicatively (for 
more details on the applications see [G]). Non-square 
systems occur in interconnected systems where no dis- 
tinction between inputs and outputs is made. In eco- 
nomics the Leontief model is in general a non-square 
implicit system, while the square caSe corresponds to 
a system where the number of goods procluced equals 
to the number of factories, which is rather an artifi- 
cial case. Non-regular descriptor equations play also a 
very important role in the study of the discrete Riccati 
equation, where the associated Extended Hamilt.onian 
Pencil (EHP) (see [ll], [IO]) is involved. 

The regular case has been extensively studied by many 
authors (see for example [l], [2], [3], [4], [5], [7] etc.) 
and several approaches have been proposed. In all 
these studies it shown that the initial conditions of 
the descriptor equation cannot be arbitrarily chosen, 
since this may result the system not to be well-posed. 
Furthermore it is shown that if we restrict the time 
interval from Zf to a finite interval and place appro- 
priate boundary conditions then the solution can be 
uniquely characterized,. The non-causal nature of de- 
scriptor systems can be expressed either through its 
forward - backward decomposition [3], where the origi- 
nal system is decompcxsed into the casual and the anti- 
causal part or via the boundary mapping equation [2], 
which plays the role of a generalized transition matrix 
for singular equations. 

From a behavioral point of view non-square descriptor 
systems have been studied both in continuous and dis- 
crete time (see e.g. [14], [12], [13]), but no attention 
has been focus& on the role of the structure at in- 
finity of the corresponding matrix pencil. As a result 
in the discrete time case the behavioral approach does 
not take into account the non-causal nature of singular 
systems. This is because causality of the behavior is 
an a pr%ori assumption and consequently, Z+ as time 
domain, is the natural framework, in all these stud- 
ies. Furthermore a fundamental distinction is made 
between the system and its mathematical representa- 
tion. According to the behavioral approach, the system 
(see e.g. [12], [13]) . d fi d 1s e ne as the set of all possible 
trajectories produced as outcomes from some particu- 
lar physical, economical or social phenomenon. On the 
other hand the mathematical representation of the sys- 
tem may take several forms depending on the way we 
choose to model it. 

In this paper we follow an approach similar to that 

ill [ll, PI, 131, 14, 151, [71, tl ra ler than the behavioral 
one. Particularly, we examine the solutions of a given 
non-regular descriptor equation without malting any 
assumptions of causality of the corresponding behavior. 
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The notion of conditionahilty [I] is naturally extended 
to the non-square case and plays a fundamental role in 
the classification of the solutions. 

2 Conditionabilty and Behavior 

Consider the non-regular homogeneous descriptor 
equation 

Ezk+l=Axk, k=0,1,2 ,..., N-l (1) 

where E, A E R pxm are constant real matrices and 

xk E R”“, I; = 0, J,2, . . . . N is the descriptor vector. 

The above equation can be written in a more compact 
form as 

-A E 0 ... 0 - 

0 

I. 

-AE i 

; 

._ . . . 0 
. . . 0 -A E 

or equivalently 

SNZ,” = 0 

= 0 (2) 

(3) 

Where ,!?N E RNpx (“+l)m is the matrix in the left hand 
side of (3) and IN = [x:,x:, . . . . ~$1’ E R(N+l)n”. In 
[l] the matrix SN is defined as the solvnbilitl~ mabk In 

the i~on=homog~tiaous cast [l] where inputs arc involvd 
the matrix SN must have full row rank, in order for the 
system to be solvable. However in the homogeneous 
case we don’t have to check for full row rank of S,v since 
there are no input terms and equation (3) is always 
solvable (in the worst case the system will have the 
trivial solution xk = 0). We introduce the set of all 
solutions of (1) 

B = {zk : J?&+~ = Azk, k = 0,1,2, . . . . iv - I} 

The notion of conditionabilty can be extended to the 
non-regular case. Luenburger in [l] defines a solvable 
system to be condi~ionnble if any choice of (admissible) 
boundary values 20, XN characterizes uniquely the so- 
lution for all the intermediate steps x1, x2, . . . , XN- 1. In 
the regular - time invariant case the system is always 

conditionable. 

In our case (1) the system is not in general con- 
ditionable, which means that the boundary values 
20, xN are llot SUffiCiellt to determine the SOhltiOll 

x$ E B uniquely. To see this consicler two solu- 

tiOliS of (2) %N: ;1/N liaviii~ m the same boundary val- 
ues x0, xN and probably different intermediate val- 
ues, i.e. T T Tj,, = [x0,x T 1 , . . . . 5 ,,,- 1, n:clT and jj,v = 

[“oT,YT,...,Y;-y‘v rrlT. Then it is easy to see that. the 

differenceZiv-jj,v=[O,xr-yT ,..., ~;$-l-:~/~-l,O]T 

will also satisfy (2). Equation (2) now reduces to 

‘E 0 ... 0 

-A I$ 0 i 

0 . **. 0 . . =o 

. . . -A E 
iI ... 0 -A 

XN-1 - YN-1 

Obviously x12 = yk:, k = 1,2, . . . . N - 1 if and only if the 
matrix in the left hand side of the above equation has 
full column rank. This matrix is defined in [l] for the 

regular case as the conditionabilty matrix. Similarly 
we define the conditionabilty matrix of the non-regular 
system to be 

c, = 

E 0 ... 0 

-AEO i 

. . . . 0 . . 0 

. . . -A E 
(j . . . 0 -A 

E ~Npx(N-l)m (4) 

It is well known (see for example [9]) that regularity of 
the matrix pencil DE-A implies full column rank of C’,v 

and hence conditionabilty of the corresponding system. 
When the matrix pencil aE - A is not regular then it 
is possible to have an unconditionable system. This 
would imply that there are non-trivial solutions even 

when the boundary values x0, XN are both zero. These 
SO~~ltiOllS Will haVe the form ZN = [0, k$, . . . . zz-1, OIT, 
with [:T ,..., zzvl]’ E 1cercN. 

On the other hand when we have a homogeneous au- 

toregressive representation such as (1), it is natural 
to expect that the solutions are triggered by non-zero 
boundary values xu, EN. This leads to the following de- 
finition 

Definition 1 Two solutions of (1) (xk,yk) E B x B 
are said to be “boundaryl” equivalent iff 

It is a trivial task to verify that (5) defines an equiva- 
lence relation between the solutions of (1). This equiv- 
alence relation defines a partitioning of the behavior of 
(1). It is nat,ural to consider the solution space of (1) 
as tlie set of equivalence classes of solutions, i.e. 

I3 = B/[O] (6) 

The wxtor spare E consists of equivalence class= mod 

[()I of the form [xk] = {yk : yR = x8 + zIz, yk E B, Zk E 
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[0]} = zk + [O]. Tl ie solution zk will be called a repre- 
sentative of the class [ok]. Obviously when the system 
is conditionable, [0] reduces to (0) and fi = B. 

In order to investigate the structure of fi we use the well 
known Kronecker form of the matrix pencil UE - A-(see 
for example [9]). A g eometric characterization of B, in 
terms of proper and non-proper deflating subspaces, is 
also possible but it will be avoided here for simplicity 
reasons. 

It is known that for every matrix pencil aE - A, with 
E A E Rpx”, there exist two invertible matrices U E 
&XP, I/ E R”lxm such that 

r aIn- Jc 0 0 0 1 

where the matrix in the right-hand side of the above 
equation is the Kroneclcer form of the original pencil. 
The first block of the diagonal matrix corresponds to 
the finite (generalized) eigenvalues of aE - A and Jc: 
is considered to be in (real) Jordan form. Similarly 
the second block corresponds to the infinite eigenval- 
ues of the original pencil and J, is a (nilpotent) ma- 
trix in Jordan form with all its diagonal elements equal 
to zero. The third (fourth) block LE(~) (L,,(a)) is a 
block diagonal matrix consisting of smaller non-square 
blocks L&), i = 1,2, . ..r (Lqi (a), 7: = 1,2, . . . . I) of 
the form L,,(a) = aMei - N,: (Lqi (0) = aAf$ - 

1 0 ... 0 

Nz)witli MV = [ 1 ; . . . . . . ! E R*‘X(“+l) allcl 

0 . . . 1 0 
0 1 ... 0 

N, = 

[ 1 

: . . . . . . ; E RUx (2’t1), where ‘u = ci 

0 -.. 0 1 
or 2, = 7]i. The blocks LBi(o) (L,$(a)) are the right 
(left) Kronecker blocks and the indices ei (Q) are the 
right (left) Kroneclter indices of aE - A. Furthermore 

let E = CL1 ei (71 = &, ~7i) and p = n+;r.+~+?l+l, 
m = n + p. + E + 17 + r. 

The following lemma will be very useful in the sequel 

Lemma 1 Coluider the generalized resdtnd madrix 
(see [b']) of aE - A 

r 
-A E 0 ... 0 1 

s,= O -A E E RkpX (k-+1)7??. 
-. *. . . 0 

10 ... 0 -A Ej 

(8) 
then rn7lkS~ = kp - C (k - l]i) where ?]i, i = 

{i:k>v)i} 

1,2, . . . . 1 are the lest Kronecker indices of aE - A. 

Proof: The proof is straightforward if we apply the- 
orem $ in [S]’ for the pencil aE - A. n 

Now we can state the following 

Theorem 2 For any long enough time interval, 
namely for N > N”li, the following hold 

dimB =Nr+m-q (9) 

dim[O] = (N - 1)r - E (10) 

Proof: In view of (2) ‘t 1 is obvious that B is isomorphic 
to her S1v. Now according to lemma 1 rankSN = Np - 

C (~V-T~~).NOW for N > N,i,, we haverankSN = 
{j:N>Vj) 

Np- c (N-Q) = Np-NZ+?l. ThusdimkerSN = 
j=l,..,l 

(N + 1)m - rankSN = Nr + m - 17. This proves that 
dim B = Nr + m - r]. Similarly it is easily seen that 
[0] is isomorphic to her C, . Now applying the previous 
lemma to 

ET -AT . . . 0 

c; = : . . . -.* ; 

[ 

E R(N-~)~~NP 0 . . . ET AT 1 
(11) 

we take ra??.kCN = rankCz = (N- l)m- c (N- 
{i:N>ri} 

1 - E;)where the right indices of aET - AT are simply 
the left indices of UE - A. Thus for N > Nmin we take 
ra?zkCN = Nm - m - (N - 1)~ + E and dim her CN = 
(N - 1)m - ru?zkCN = Nr - r - E. This proves that 
dim[O] = Nr - 7‘ - E. n 

In what follows it will be assumed that N > Nmin so 
we can apply the results of the above theorem. We can 
apply Luenberger’s method [2] in order to determine a 
generalized boundary mapping equation for (1). The 
boundary mapping equation in regular descriptor sys- 
tems, is a generalization of the transition matrix in 
state space systems. Namely the boundary mapping 
equation gives the relation between the boundary val- 
ues .rc and .rN, Furthermore it summarizes the restric- 
tions posed by the system at both end points of the 
time interval k = 0, 1, 2, . . . . N. 

lActualy equatiou (2.4) in [S] has a typographical error. From 
the proof of theorem 1 it is obvious that the correct formula is 
TC‘llkSk = (P + q)k - C (k-Vi)* 

{i:q<k) 
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We apply row compression on S, in (2) to keep only 
the independent rows of SN. This can be done by pre- 
multiplying (2) by an appropriate (invertible) matrix 
F1 E RpNxpN as follows 

F~SN%N = 0 (12) 

x0 cfy XN 

0 0 0 
I 

Li?N=o (13) 

where 
x0,x, E ~(Np-Nl+‘?)xm , CL E @Np-Nl+qxm(N-1) 

(recall that Np - NZ + 17 = rnn.kS,v and thus the ma- 
trix [X0, CL, XN] has full row rank) and the zeros are 
zero matrices of appropriate dimensions. We can drop 
the zero rows of the matrix in (13), since they play no 
role in our system. Thus (13) reduces to 

[ x0 CL x,v ] z,v = 0 (14) 

Now the matrix CL plays the role of the conditionabil- 

ity matrix and obviously IYU~~C’~~ = ~a?akC~ . Thus 
if we apply row compression in CL (by premultiplying 

CL by an appropriate invertible matrix Fl) we have 

where M’ E R( Nm-m-(N-l)r+~)~ (!V-l)n~ is a full ro\v 

rank matrix. Applying this in (14) we take 

FI [ Xo Civ XN ] %j” = 0 

r x x 1 r x0 1 

T/Tr : X1 
+I 

=o (15) 
X X 

1 Z-0 0 **- 0 ZN ] 1 XN J 
n*l~oro the numbsr of rowb of lwd11 Zo, ZN will 1x2 (N p- 

NZ + q) - (Nm - 772 - (N - 1)r + 6) = 77. + 11 + 217. 
Furthermore the matrix [ZO, Z,v] will have full row rank 
since the matrix on the left-hand side of (15) has also 
full row rank. The last block row of (15) gives rise to 

the following 

Theorem 3 For every (possibly) Izon-regular descrip- 
tor system of the form (1) there exists a generaked 
boundary mapping eqnatiou of the form 

[zO,zN] ;;, =o 1 1 PI 
with [Zo, ZN] E R(n+p+2’1)x 2n’ and IYI&C [ZO, Z,v] = 
n f p f 217, which su8mmnrkes the restrictions posed 
on XI-J, XN by the system. 

The above theorem gives a very important result. Ob- 
viously [z$, xs] can be chosen from lter[&, Z,v] whose 
dimension is 

dim lter [ZO, ZN] = 2n1- (n + p + 217) = 7~. + 11. + 2(~ + r) 

(17) 

Thus there are exactly n+p+2( ~+r) degrees of freedom 
in the choice of ~0, XN. It is natural to expect that this 
will be also the dimension of B since its elements are 
equivalence classes of solutions with the same bound- 

t 
1 ary conditions. This will be much more clear in the 

following section. 

3 Classification of the Solutions 

The matrix pencil aE - A in the original equation (1) 
can be considered without loss of generality to be in its 
Iironeclter form, since equation (1) can be transformed 
to its “canonical” form by premultiplying by U and 
taking a coordinate transformation of the descriptor 
vector according to xk = Vfk. 

In this section for simplicity of notation we shall assume 
that QE - A is already in its canonical form and no dis- 
tinction will be made between $k and xk. Furthermore 
we assume that N > N,,i,l. In this case it is obvious 
that the system can be decomposed to several subsys- 
tems corresponding to the finite, infinite, right and left 
Kroneclter blocks. We note that we shall use the nota- 
tion of the previous section for the vector spaces cor- 
responding to each subsystem. In order to avoid con- 
fusion of notation we shall distinguish them using the 
indices C, OC), Q, 1lj. At this point it would be useful to 
partition correspondingly the decriptor vector as xk = 

[(xf)T, (xT)T, (xp-, . . . (xF)T, (x;I-‘)T,. . . ) (x;1.‘)‘]’ 

Now (1) can be written equivalently as 

x:+1 = JcxE (18) 
Joo;cp+l = :LJy (1”) 

n/r,,x~+l = NEix; (20) 

AC Xqi 7, k,-+l 
= NTz% 

OJ’ k (21) 

for i = 1,2, . . . . Y, j = 1,2, . . . . 1. The first two equations 
(18),(10) are of no particular interest since, these two 
parts correspond to a maximal forward F/B decompo- 
sition of a regular system in [3]. The solutions can be 
easily obtained in terms of arbitrary initial and the final 
values of $,xF from the formulas xg = J,$xf and 
xr = JL-“x7. Accordingly we define the behavior of 
these two subsystems Bc = {xf : xf = J~x~} and 
B, = {xr : xr = Jg-“XT}. Furthermore dim Bc = 
n and chm B, = p since the columns of the corre- 
sponding matrices J&, JE-” are linearly independent 
sequences. Obviously these two subsystems are condi- 
tionable (they are regular descriptor systems) and thus 
[O]c: = {0}, 8~ = Bc and [O]B, = {0}, &, = B,. 

We examine now the third group of equations (20). For 
equat,ion (20) define similarly the vector spaces Bei and 
[Olei. Then according to theorem 2 and if we take into 

account that aA!& + NEi has only the right index E;, 
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we have 
dimB,, =N+ci+l 

dim[O],, = N - ei - 1 

It is obvious that [OIEi C BEi. In order to determine 
the set of equivalence classes & = BEi /[Olei of (20) we 
need to find a representative for every non-zero equiva- 
lence class. This is a relatively easy task if we consider 
the following 

Proof: The proof follows simply by straightforward 
computation if we take into account the special form 

of A/r,, , NE<, Jei. n 

In view of (24) we can verify that MCi Jk+’ = 

NEi Jk and NEi ( J$)12+1 = MEi (Jz)“for every 5 = 

0, 1,2, . . . . N - 1, which means that the columns of both 
J”, (JT)“-” satisfy (20). Furthermore these columns 
are linearly independent solutions. This leads to the 
following 

DefinitiQn 2 33; = {a$ 

(x2 : x; = (Jz)“-“x;}. 

The indices f, B in the above defined subspaces stand 
for “jurw1~7.d” and “backward” respectively. The sub- 

space Bfi contains solutions arising from the forward 
propagation of the initial value x2, while Bzi contains 
solution moving in the opposite direction. 

Lemma 5 dim BEfi = ci + 1 nnd dim B,bi = ci + 1. 

Proof: The proof is straightforward if we tale into 
account that the columns of both J”, (JT)“‘-“, for 
k = 0,1,2 )...) N, are linearly independent solutions of 
(20). The dimension of both B&, B,bi is equal to the 
dimension of J” or (JT)N-‘, which is pi + 1. n 

Theorem 6 

Bci = Bli CD B:; CD [O],; (25) 

Proof: Consider first a solution xi: such that xiTi E 
BEfi and x:: E Bii then 

If we take into account that Jc: = (JET)” = 0 for every 

k > ei+ 1 and the assumption that N > Nmin 2 ei from 
(26) we take xz = JEy.xz = 0 and x2 = (JE~)N~~ = 0. 
Thus x; = 0, for every k = 0, 1,2, . . . . N. This proves 
that B& f~ Bzi = {O}and we can define 

B,f!” = B,f @ Bii = {z; : x; = J;x; + (J;)“-“x2} 1 1 
(27) 

NOW it is easy to see that B,f!b II [OIEi = (0). Indeed if 

~2 E B,filb and x2 E [Olei then x2 = x> = 0 and from 
(27) x;I-i = 0, for k = 0, 1,2, . . . . N. Now we can define 

the dimt SHlll sgb @ [OIEi = B& @ ,q @ [O],,. If We 
take into account the dimensions of these subspaces we 
have dim(Bfi @BE”; @ [Olei) = N+ei+l which coincides 
with dim B,; = N+~i+l. Thus Bci = B,li @B,bi @[Olci. 

n 

We introduce now the vector space of equivalence 
classes mod [OIEi corresponding to (20) 

& = &jl[ol,j (28) 

Theorem 7 

&i = (B;‘, @ B&)/[O]ci = B,fJ[O]ci CB B:J[O],i (29) 

dim & = 2(ei + 1) (30) 

BP& Obvisusly l3; c3 Bfi c & wliieh implies 
(B& @B,“,)/[O],, C_ Bci/[Olci = &. Now let [x:] E &. 
From (25) we can uniquely write x;-i = yz + 82 + 22 
with y: E BL ,jj: E Bti and zz E [OIEi. Obviously 
[x;;] = 9; +‘g + IO],, which implies that [x2] E 

(B& 63 B,bi)/[O]gi. Thus & C (B& CD B;i)/[O],i. This 

proves that & = (B& @ B,bi)/[OIEi. For the second 
part of (29) we have B& C Bci and B:* C BEi and 
obviously B& /[Olci + Btz/[OIEi C BEi/[OIEi. Inversely 

if [x2] E & then according to the above unique de- 
composition of xi: we have [x2] = ;yz + 92 + [OIEi or 

[x2] = (y;; + [O]Ei) + (92 + [O]Ei) E B,fi/[O],, + B,bi/[O]ci. 
Thus BEi/[OIBi g B,fi/[O],, + B,bi/[Olci. This proves 
that B,i/[O],i = B,fi.[O]c, + Bti/[Olei. Furthermore it 
is easy to see that B&.[O]Ei II Bii/[Olci = [OIEi. This 

allows us to write & = B$[Olci @ Bti/[OIEi. In or- 
der to prove (30) it is enough to see that the mapping 

(Bi, @ n,b; ) 3 q e [x2] C Bgi is clearly an isclmor: 

phism and thus clim tiCi = dim Bii+dim Bii = 2(ei+l). 

n 

Applying these results to (20) for all i = 1,2, .-.,Y we 
clcfine 

& = BcI[O]e (31) 

where B, = 6 BEi and [O], = &[Ole, (these direct 
i= 1 i=l 

sums are well defined because of the block diagonal 
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structure of the Kroneclter form). The previous the We should finaly notice that all the above results can be 

orem can be extended if we define B,f = 6 B& and easily expressed even when the matrix aE - A is not in 

i=l its canonical form, using the transformation matrices 

Bj’ = 6 Bfi. We have i-’ u, v. 
7 

i=l 

dim& = dim(Bf@B,b) = 22(~+1) = 2(~+1’) (33) 
i=l 

We examine now the fourth group of equations (21). 
Applying theorem 2 and the fact that the pencil aA$ - 

Nz has only the left index 7Ij we take dim B, = 0 + 
qj - qj = 0 and dinl[O]qj = 0. Hence Bqj = {0}, which 
means that this part of the system has only the trivial 
solution NF = 0, k = 0, 1,2, . . . . N. Extending this result 

for all j = 1,2,3, . . . . I we have B, = & Bllj = (0). 
j=l 

Now that we have completed the investiga$on of the 
solution space we recall the definition of B in (6) as 
the set equivalence classes mod [0] = [O]c @ [Oloo @ [O], 
@[O], = [OIE. It is a trivial task to see that the following 

holds 

Theorem 8 B = (Bc @ B, ~3 B% CB B,b)/[o]~d 
dimB = dim(Bc @B, @ B,f CEI Bf) = 77. + 11. + L?(E + 1’). 

It is not surprising that dim B coincides with the num- 
ber of degrees of freedom in the choice of boundary 
values 20,~~ in (16). 

4 Conclusions 

The lack of conditionability, due to the presence of right 
Kroneclcer indices in the pencil aE - 4, plays a crucial 
role in the classification of the solutions of the non- 
regular Ezk+l = Ax,. The set of solutions arising, from 
zero boundary conditions ~0 = N,V = 0 is defined as the 
zero equivalence class [0] and the set of all solutions B 
is partitioned to equivalence classes having as elements 
solutions with the same boundary values ~0, z,v. It has 
been shown that the source of unconclitionability and 
hence the existence of non-trivial zero equivalence class 
[O], are the right Kroneclter indices. 

The finite and infinite eigenvalue structure of the pen- 
cil gives rise to forward and bacltwarcl solutions respec- 
tively, while the right indices give bot,h forward ancl 
backward solutions. On the other hancl the left in- 
dices give only the trivial zero solution restricting this 
way the choice of boundary conditions of the complete 

equation. 
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