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Abstract

The main objective of this paper is to determine a closed
formula for the forward, backward and symmetric solution
of a general discrete time AutoRegressive Moving Average
(ARMA) Representation. The importance of the above
formula is that it is easily implemented in a computer al-
gorithm and gives rise to the solution of analysis, synthesis
and design problems.

1 Introduction

Consider a nonhomogeneous system of linear difference
and algebraic equations described in matrix form by

A0)y(k) = B(o)u(k) (1)

where ¢ denotes the backwards shift operator i.e.
a'y(k) = y(k+17),

Alo) =Ao+ Ao+ -+ Ago? € Rlo]"™*" @)
B(0) =By + B1o +---+ By,o? € R[o]"”*™

where rankg(,)A(0) = 7, at least one of Ay, By is
nonzero, y(k) : Z™ — R" be the output of the system
and u(k) : ZT — R™ be the input of the system. Follow-
ing the terminology of [16] we call the set of equations (1)
an ARMA representation of B, where B is the solution
space of equations (1) defined by

B =my(By) (3)

with
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By :={( y(k) u(k) ):Z* - R" xR™ |
| (ARMA) is satisfied Vk € Z7} (4)
m RO xR™ > R, (y(k) wk) ) =y(k)

In case where A(0) = 0FE — A € R[o]"*" and B(o) =
B € R™™ then the ARMA representation (1) is the
known generalised state space representation

Balk +1) = Ax(k) + Bu(k) (5)

while in case where det[F] # 0, (5) is the known state
space representation. For a survey of singular systems of
the form (5) see [7].

ARMA representations of the form (1) find numerous
applications in analysis of circuits [12], neural networks
[2], economics (Leontiefl model [9]), power systems [14].

In case where det [4,] # O then the solution of the
ARMA-representation (5) is trivial while in the more gen-
eral case where A, is a singular matrix many different
techniques ([1], [6], [§], [10], [13], [15], [11]), have been
applied for the solution of (5) and among them we dis-
tinguish [8], [11]. This technique gives a solution of (5)
in terms of the forward fundamental matrix ¢, and the
backward fundamental matrix 7, of (2 — A)~1. Follow-
ing similar lines with [8], [11] we produce in Section 3 a
closed formula for the forward, backward and symmet-
ric solution of the general ARMA-representation (1) in
terms now of the fundamental matrix Hj and the back-
ward fundamental matrix Vi of A(s)™!. A generalized
Leverrier technique for computing the forward fundamen-
tal matrix Hj, is available [3], so that we may assume that
this fundamental matrix is given. We shall show in Sec-
tion 2 that the backward fundamental matrix is the for-
ward fundamental matrix of the dual polynomial matrix
A(w) = Agw? + Ajwd™ P 4 - + A, of A(s) and thus we
may assume that V}, is also given.



2 Preliminary Results

We are concerned with the discrete time ARMA-
representation (1) where y(k) € R", u(k) € R™, k €
[0, N] and u(k) is nonzero for & = 0,1,..., N —¢q. We
assume that A(2) is regular i.e. det[A(z)] # 0. Given reg-
ularity the Laurent series expansion about infinity for the
resolvent matrix exists and is given by

qu71_|_...

(6)

Ay ' =H 2"+ H
g, g1

where ¢, is the greatest order of the zeros of A(z) at
2z = oo and the sequence {Hj} is known as the forward

fundamental matriz [3]. The Laurent expansion about
zero of A(z)71is

A(Z)71 = V,gzié + V,g_;_lzié_‘_l +--- (7)
where the sequence {V}} is known [8] as the backward
fundamental matrix.

The Laurent expansion about zero of A(z)~! given in
(7) is related with the Laurent expansion about infinity
given in (6) of the inverse of the dual matrix A(w) =
Aow? + Ajw? 1 4 - - - + A, of A(2) as we can see in the
following

Lemma 1 Let the Laurent expansion about infinity of
A(w)™1 s
Aw) ™' = Hyw! + Hp w1 -

(8)

and (7) is the Laurent expansion aboul zero of A(z)~ .
Then
g+f=Cand V., =H ¢ jpii=00—1,.,—1,.

)

Proof. We have that
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Equating the coeflicients of the powers of 2z we obtain
the proof of Lemma 1. |

A direct result from Lemma 1 is that the Leverrier al-
gorithm in [3] may be used for the computation both of
the forward and backward fundamental matrix. An inter-
esting result which connects the solutions of the ARMA-
representation (1) and the ones of the dual discrete time
ARMA -representation :

Agk)+Ag g+ 1)+ - -+ Aok +¢q) =
Byu(k) + Bg—1(k +1) + - - - + Bot(k + q)

(11)

in the closed interval [0, N] is given by

Theorem 2 (a) If §(k) is a solution of equation (11) for
the nonzero input 4(k) then the sequence y(k) = g(N — k)
is a solution of the dual equation (1) for the nonzero input
u(k) = (N — k).

(b) If y(k) is a solution of equation (1) for the nonzero
input w(k) then the sequence §(k) = y(N —k) is a solution
of the dual equation (11) for the nonzero input (k) =
w(N — k).

Proof. a) Let §(k) be a solution of (11). This implies
that (11) is satisfied. Now consider the equation (1). If
we set y(k) = (N — k) and w(k) = @(N — k) and take
into account that y(k + j) = (N — (k+ 7)), wlk +j) =
(N —(k+j7)),i=0,1, ..,q we have

b) Following the same way we can show the second part
of the Theorem. Jj

A direct result from the above theorem is that the back-
ward solution of the ARMA representation (1) comes di-
rectly from the forward solution of the dual ARMA rep-
resentation (11).

3 Solutions of ARMA - Represen-

tations

There are three different interpretations of (1) [8] :

(i) We may consider that the initial conditions {y(0),
y(1), ..., y(¢ — 1)} are given and that is desired to deter-
mine y(k) in a forward fashion from the input sequence
and the previous values of the output.

(ii) We may consider that the final conditions {y(N),
y(N — 1), ..., y(N — g+ 1)} are given and that is desired
to determine y(k) in a backward fashion from the input
sequence and the future values of the output.

(iii) We may consider (1) as a relationship between the
inputs and outputs ¢.e. economics and thus no causality is
assumed. It is desired to determine y(k) for the values of
k € [q, N—q|, in terms of the input sequence and the initial
and final conditions. We could call this the symmetric
solution of (1).

3.1 The Forward Solution of ARMA-
Representations

Consider the discrete time ARMA- representation (1)
where A(z) is regular i.e. det[A(2)] # 0 and the Laurent
series expansion about infinity for the resolvent matrix
exists and is given by (6). Then we have



Theorem 3 The forward solution of (1) will be :

k+3r 4q

y(k) =3 ]

=17 =0 j=0
k=q,qg+1,..

(13)

Proof. Equating the coeflicients of the powers of 2z in
the relation A(z) x A(2)"! = I,. we have that :

q
Z Hiann - 51']7“

n=0

Zq: AnHifn = 51']7“ or (14)
n=0

where §; = 0 for i # 0 and 8y = 1. Now substituting
y(k) from (13) in (1) and using (14) we observe that (1)
is satisfied. JJ

From the above formula we can see that the discrete
time ARMA-representations have no impulsive terms in
their responses in contrast to the continuous time ARMA-
representations. Another difference is that the discrete
time ARMA-representations do not always have a solu-
tion. A necessary and sufficient condition such that the
ARMA-representation (1) has a solution is that the initial
conditions {y(0),y(1),...,y(¢—1)} satisfies the relation (1)
for k=0,1,..,¢ — 1. Therefore we define :

Definition 1 We define as

Hiy = {y(d), u(@) (i=0,1,...,g—1):
Hy -y 4 (0]
~ o, H, o | - y(1)
A : : A : -
H 411 Hy y(g—1)
H, H 0
a,
. H_, H H
— Ay . 7-1 .q,«
H g H H o
qr—q+1 qr—q+2 q,
u(0)
Bo B, 0 0 w(1)
: : : }
0 By B By ||, <2q+ 0 1)
(15)
where
Ao 0 e 0
. Ay Ay - O
A= : : : (16)
Aqfl Aq72 AO

the admissible initial condition space of (1) under
nonzero inputs.

Proof. Consider the relation (1) for £ =0,1,...,¢ — 1
and substitute the values y(q), y(¢+1), ..., y(2¢ — 1) with

g
HopiAjy(G—4) + > > HopsiBjuli+j)
=1

the respective formula of (13) and use of (14) give us that
the initial conditions {y(0),y(1),...,y(q¢ — 1)} satisly the
system iff the relation (15) is satisfied. I

As we can see in (13) the solution of (1) is determined in
terms of the initial conditions {y(0), y(1), ..., y(¢—1)} and
the input sequences of the system. An obvious disadvan-
tage is that for each successive output y(k), specified by
k= q,q+1, .., the coeflicient matrices H; comprising each
specific solution change. Therefore if the solution is re-
quired over a comparatively large range, say [y(q),y(¢+1),
..,4(100)] corresponding to k = ¢,q+ 1, ..., 100, we would
require the coefficient matrices H 191, H_100,...,H- . An

equivalent forward solution is presented in what foll(l)I:Ns for
the general solution y(k) depends on the previous ¢ out-
puts {y(k—1),y(k—2),...,y(k—¢)} and not on the ¢ fixed
initial conditions {y(0),y(1),..., y(¢—1)}. In this case the
coeflicient matrices required over a solution range is fixed,
(i.e. independent of k), namely H_ o, H q11,...,H-

r

Corollary 4 Equation (13) is equivalent to the following
forward recursion :

q i—1
y(k)=—> ZOH%Ajy(k —i+j)+
i=1j=
- (17)
7+9% q ) )
+ Z%) Z:Oqu—HBju(k—q-l-j-l-z)
=0 j=

Proof. The system is time invariant and thus the
relation which connect y(k) with the previous vectors
{y(k—1),y(k—2),...,y(k—q)} will also connect the vector
y(q) with the vectors {y(¢—1),y(q —2),...,y(0)}. Thus if
we replace {y(q),y(¢—1),....y(0)} with {y(k),y(k—1),...,
y(k—q)} respectively and {u(0), w(1), ..., u(2¢+ ¢,)} with

{u(k—q), u(k—q+1), ..., w(k+qg+ ¢,)} in (13) respectively
we get the relation (17). ]
The advantage of the formula (17) is, as we have al-

ready mentioned, is that it depends only on the ¢+ ¢, +1
Laurent expansion terms {H_ o, H qi1,...,Ho,....,H- }.
The above formula is very usefull when we need to qae—
termine y(k) in the closed interval [¢,+00], because we
always have to start to compute from y(q), (¢ + 1), ...
in contrast to the solution formula (13) where only the
q first initial conditions are enough for the determination
of the solution in the interval [n,+o0] where n > ¢. An-
other advantage of (17) is that the round-of errors for the

determination of the g+ ¢, +1 Laurent expansion terms
{H_4, H ¢41,...,Ho,...,HH- } are less than the ones for

4
the determination of {H_y, ..., H- } in (13).
4

3.2 The Backward Solution of ARMA-
Representations

Consider the discrete time ARMA-representation (1). The
Laurent series expansion about zero for the resolvent ma-



trix is given by (7). The sequence Vj is the backward Corollary 6 Fquation (18) is equivalent to the backward
fundamental matriz and is easily implemented according recursion :
to Lemma 1 and [3]. Then we have

Theorem 5 The backward solution of (1) will be :

y(k) = ; ; Ay (kg z+g)+z S° V. Byu(kj—i)

. 1=0 j=0
gk =S S Ve i Ay(N — i+ )+ (21)
=0 j=0 (18 Proof. Following similar lines with the proof of Corol-
+q+kiNfé Zq: Vy b o iBiu(N+j—i—q) lary 4 we obtain the result. |
i=0 =0 R The advantage of the formula (21) is, that depends only

from the ¢g+¢+1 Laurent expansion terms [V, Vy_1,...V_¢]
and thus we don’t need the continuous computation of
the Laurent expansion terms which gives rise to numerical
errors.

Proof. Determine the forward solution of the dual
ARMA-representation (11) and make use of Theorem 2. I
A necessary and sufficient condition such that the
ARMA-representation (1) has a solution is that the fi-
nal conditions {y(NV),y(N —1),..., y(N — g+ 1)} satisfies
the relation (1) for k= N, N—1, ..., N—q+1. Therefore 3.3 The Symmetric Solution
we define :
In this section we consider (1) as a relation between the
Definition 2 We define as y(k) and u(k) over an interval [0, N], with & not neces-
sarily the time index. Such an interpretation is used in
economics and elsewhere [7], [9]. Consider the discrete

Hiw={y(@), u(@) i =N,N—1,..N—q+1): time ARMA-representation (1) and the Laurent series ex-
Vig o Vg y (N) pansion about infinity for its resolvent matrix in (6).
= Voger 0 Vigggo | - y(N—1)
Az : : Az : ~  Theorem 7 The symmetric solution of the ARMA-
Vi, - Vv y(N—qg+1) representation (1) is given by the following formula :
- —-q
V., Vip 0 .
. Viger - Vi V., -0
=Aq . . .
. . . . . . a g
Vi oo Vigegr Viogega -+ Vo y(ky =3 3 Hopidy (G =)+
w(N) LT
B B, O 0 : S
° : u(N—1) + Z > Hyr-idiy(N —i49)+ (22)
. . ’ . . . . . } N = J:
: -q q
0 -+ By By -+ By W(N—=g—0+1) + 5 S VNep g iBju(N+j—i—gq)
i=0 j=0
(19)
where under the following restrictions between the initial condi-
A 0 - 0 tions, final conditions and input sequences :
q
- Ag 1 Ay - 0
Ao= : : . : (20) Wll W12 XAnyq—O-l,N N Zl B
A A ‘ A War Was XAqu,l | 2 NEON
" g - . (23)
the admissible final condition space of (1) under nonzero  where
inputs.
Proof. Consider the relation (1) for k=N —¢, N —¢— H., H g1 -+ Hoogn
1,...,N —2¢ + 1. Then substituting the values y(N — ¢), H ,w H. 4, -+ H g2
y(N—g—1), ..., y(IN —2¢+1) with the respective formula Wi = . . . .
of (18) and using (14) we get that the final conditions H. H. H.
{y(N),y(N — 1), ...,y(N — ¢+ 1)} satisly the system iff I -1 I —2 7‘}{
the relation (19) is satisfied. I I;N+q71 H7N+q72 o H N
A backward solution formula in terms of the following Wi = ~N+a “Ntel TN+l
q terms and the input sequence of the system is provided
by the fOllOWing H,N_;_gq,g H,N+2q,3 te H7N+q71



Hy 2401 Hy 24 Hy 3442
Hy 2410 Hy 2441 HyN 3943
War = : : :
Hy_, Hy_q1 -+ Hy_2q11
Hy H_, H_ gt
H1 HO H—q+2
Waz = : : :
qul Hq72 HO
(21)
Ay Ay A
0 A, Ay
Xa= ) )
0 0 A,
A 0 0 u(N)
A A 0 w(N—1)
X- = ) ) ) ; U, N = )
A : : : :
Aq,1 Aq,Q Ao U (0)
Bo B B, 0 0
e | OB
0O 0 --- By By - B,
Hoy H-g H n
H7q+1 qu H7N+1
Zy = ) ) )
| H 1 o 5 H Nig 1
[ Hy_2¢+1  Hn-—24 H
Hy 2442 Hn 2441 H_ 410
Zy = ) ) )
Hy 4 Hy g1 Hy
y(N) y(g—1)
y(N—1) y(g—2)
YN—g+1,N = . ; Y0,-1 = :
y(N—q+1) y(0)

We call the equations (23) the boundary mapping equa-
tions of (1).
Proof. Rewritting (1) in the form

y(N)
Ao Ao 0 Ul v
0 - Ay Ay Ag y(O)
1;;\] ————
Yo, N
u(N
B, By 0 - 0 u(]\(f_)l)
: S . : ) =
0 -~ B, By, Bo 2 (0)
By [ ——

F A 0 i
XAYN —g+1,N y

0 _ B ¢, N—q

=1 -4 A | BN [
X- Yo,9-1 1 0 to,Nn
A : . :
0 - —A,
(25)

where yyn—g = [W(N — ¢)7, ..., y(@)T]T. Premultiply
both sides of (25) by

H., H_ . H_y
H_ +1 H_ H7N+1

Ap=| ! N : (26)
H gin Hogin- Ho

we obtain from the first ¢ and the last ¢ equations the
relations (23), while from the middle N — 2¢ equations we
obtain (22). |

A necessary and sufficient condition such that the
ARMA-representation (1) has a solution is that the initial,
final conditions and input sequences satisfies the relation
(23). Therefore we give the following :

Definition 3 We define as

Hi = {Y0,g-1, YN—q+1,N :
} Bnug N}

} l XAYN 11,8 ] _ [ 2
(27)

XAyo,qfl
the symmetric boundary condition space of (1) under
nonzero inputs. i
The boundary mapping equation (23) represents the re-
strictions that the system places on the boundary vari-
ables 4o g1, YN—q+1,n in order for the system to be solv-
able. Addition restrictions on the variables can be applied

Wiz

Wi
Waz

Waq

to the system in the form of an auxiliary equation
Wa1yn—g+1, 8 + Waago g—1 =C (28)

The combined boundary equation formed from (23),(28)

WiiXa WiX-

4 Zyug, N
Wo1 X4 WaX- YN-a+1,N } = | Zouwgn | &
A Yo,q-1 C
Wy Waz
= 7Y =C
(29)

will subsequently define a unique solution iff ZZ+ O=C
and Z has full column rank, where Z& denotes the

pseudoinverse of Z ie. Y = Z7 C.
Alternative forms of the solution formula (22) are given
by the following

|



Corollary 8 The symmetric solution (22) can be written
in the alternative forms

FORWARD-SYMMETRIC

g 1—1
y(k)=> > H Ajylk—j—1i)+
i=14=0
q—1 ¢
+ Y. Hy niAjy(N —i+j)+ (30)
i=0 j=0
N—k qj ) )
+ Hy g iBju(N+j—i—q)
i=0 j=0
BACKWARD-SYMMETRIC
q
y(k) - Z:l Z.kaszj y(] - Z)_
1 i=1j=1
— H_iAjy(k+j—i)+ (31)

Proof. Assuming that & = vg+v (N —k = vg+v) and
using alternatively either the relation (14) or the relation
(1) we get the result. 1

In the Forward-Symmetric case we still solve within the
region [0, N] but now the solution depends on the ¢ final
conditions {y(N),y(N—1), ...,y(N—qg+1)} and the previ-
ous q outputs {y(k—1),y(k—2),...,y(k—q)} and no longer
on the ¢ fixed initial conditions {y(0),y(1),...,y(q — 1)}.
Therefore we solve forwards in the interval.

In the Backward-Symmetric case we again still solve
within the region [0, N] but now the solution depends on
the ¢ initial conditions {y(0),y(1),...,y(¢ — 1)} and the
future q outputs {y(k + 1),y(k + 2),...,y(k + ¢)} and no
longer on the ¢ fixed final conditions {y(N),y(N — 1), ...,
y(IN—q+1)}. Therefore we solve backwards in the interval.

4 Conclusion.

In the case of regular discrete time ARMA- representa-
tions exact solutions where proposed in three different
forms : a) forward solutions, b) backward solutions and
¢) symmetric solutions. It is easily seen that the pro-
posed solutions are extensions of the ones proposed by
[8] for the less complicated case of discrete time general-
ized state space systems. A disadvantage of the method
proposed above is that the expressions are based on a
Leverrier type algorithm to calculate Laurent expansions.
Since the numerical properties of these type of algorithms
is questionable, we have applied these algorithms on the
symbolic computational language MAPLE and presented
in [4] without any cost in the accuracy of the above algo-
rithms. However the investigation of better algorithms for
the computation of the Laurent expansion of a polynomial
matrix will directly improve the efficiency of the proposed

expressions in this paper. Certain controllability, reach-
ability and observability criteria based on the proposed
solutions are being studied and will be discussed in a fu-
ture publication.
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