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Abstract

In this paper we investigate the behavior of the discrete
time AR (Auto Regressive) representations over a finite
time interval, in terms of the finite and infinite spectral
structure of the polynomial matrix involved in the AR-
equation. A boundary mapping equation and a closed
formula for the determination of the solution, in terms of
the boundary conditions, are also given.

1 Introduction

The class of discrete time descriptor systems has been the
subject of several studies in the recent years (see for ex-
ample [1], [2], [3].[4], [5], [6]). The main reason for this is
that descriptor equations naturally represent a very wide
class of physical, economical or social systems. One of the
most interesting features of discrete time singular systems
is without doubt their non causal behavior, while their
counterpart in continuous time exhibit impulsive behav-
ior.

However, descriptor systems can be considered as a spe-
cial - first order case of a more general Auto Regressive
Moving Average (ARMA) multivariable model and thus
the study of this more general case can be proved to be
very important. Such models (known also as polynomial
matrix descriptions or PMDs) have been extensively stud-
ied in the continuous time case by several authors. In this
note we investigate some structural properties of the dis-
crete time autoregressive (AR)-representation, as a first
step towards the generalization of the descriptor systems
theory to the higher order case.

Consider the discrete time AR equation

Aq$k+q +Aq,1$k+q,1 + ...+ Az =0

(1)
where £ =0,1,2,...N — g, or equivalently
k=0,1,2

A(o)zy =0, ,1,2,...,N —¢ (2)

where A(0) = Aot + Ap_ 1071+ .+ Ay € R™"[o] is
a regular polynomial matrix, i.e. det A(o) # 0 for almost
every 0, r, € W,k = 0,1,2,..., N is a vector sequence
and o denotes the forward shift operator oz, = xpyq.
Notice that we are interested for the behavior of (2) over
a specified time interval k =0, 1,2, ..., N and not over Z 7.
Furthermore without loss of generality we assume that
both Ag, A, are not identically zero, because this situation
can be avoided simply by renumbering the indices of A;.

The matrix A4, is not in general invertible which means
that (1) can not be solved by iterating forward, i.e. given
20, X1, ---» LTg—1 determine successively Zq, Zg11,.... This is
the main reason why we treat this equation as a bound-
ary condition problem, where both the initial and final
conditions should be given. This naturally leads to the
restriction of the time domain to a finite interval instead
of Z7.The results of the present paper should be com-
pared to [1], [2], [3], [4], [5], [6] where similar problems
for systems in descriptor form, are treated in a similar
manner.

Finally, following the notation of [12] we define the be-
havior of (2) as

B={z,/x, € R,z satisfies (2)} (3)

where £ =0,1,2,...N.

2 Preliminaries - Notation

The mathematical background required for this note
comes mainly from [7], [8], [9], [10] and [11]. By ®™*"[o]



we denote the set of m X m polynomial matrices with
real coeflicients and indeterminate o. A square polyno-
mial A(0) = Ago?+ Ag_1097 1 + ...+ AgR"*"[0] matrix
is called regular iff det A(c) # 0 for almost every 0. The
(finite) eigenvalues of A(0) are defined as the roots of the
equation det A(c) = 0. Let

Sy = dioallr 30", 0 A7)

be the local Smith form [7] of A(c) at 0 = A; and A, is
an eigenvalue of A(0), where 0 < my; < myo < ... < My,
The terms (0 — A\;)™ are called the (finite) elementary
divisors of A(o) at 0 = A\;, m;; j = 1,2,...,r are the partial
multiplicities of A; and m; = Z;=1 m;; is the multiplicity
of )\i~

The dual matrix of A(c) is defined as A(o0) =
0lA(0™1) = Ago? + A107 1 + ... + A,. The infinite ele-
mentary divisors of A(o) are the finite elementary divisors
of the dual A(0) at o = 0. The total number of elemen-
tary divisors (finite and infinite) of A(c) is equal to the
product r X g, where 7 is the dimension and ¢ is the degree
of A(o).

A pair of matrices X; € ™™ J; € N™ XM where
J; is in Jordan form an eigenvalue \; of multiplicity m; is
called an eigenpair of A(0) corresponding to A; iff

q
> AXJIF =0, rankcol(X;JF)s =mi (4)

k=0
X;
X, J,
where COZ(XZ-JZ-]“)ZZ&I = . The matrix J;
Xt

consists of Jordan blocks with sizes equal to the partial
multiplicities of \;.

Let A1, A2,...,A, be the distinct finite eigenvalues of
A(0), and (X, J;) their corresponding eigenpairs. The
total number of finite elementary divisors is equal to the
determinental degree of A(0), i.e. n = deg(det A(0)) =
S m;. The pair of matrices

Xr =
Jrp =

(X1, Xa, .., X,] € R7XT
diag{Jy, J2,...,Jp} € R"*"

(5)
(6)

is defined as a finite spectral pair of A(o) and satisfies the
following

q
> ApXpJE =0, rankcol(XpJE)iZs =n
k=0

(7)

An eigenpair of the dual matrix A(U) corresponding to
the eigenvalue A = 0 is defined as an infinite spectral pair
of A(0), and satisfies the following

q
> ApXeod%L T =0, rankcol(XeoJL)iZo=n  (8)
k=0

where Xo, € R7H, Joo € RHXH,

3 Main Results

Consider the AR-representation (2) and a finite spectral
pair (Xp,Jr) of A(o). In the continuous time case, i.e.
where 0 = % is the differential operator instead of the
forward shift operator, finite spectral pairs give rise to
linearly independent solutions. A similar situation is oc-

curred in our case. We state the following theorem

Theorem 1 [f (Xp,Jr) is a finite spectral pair if A(o) of
dimensions r X n,n X n respectively where n = deg |A(0)|
then the columns of the matrix

V(k)=XpJr, k=0,1,2,..,N

(9)
are linearly independent solutions of (2) for N > n.

Proof. Let (Xp,Jr) be a finite spectral pair of A(o) .
We have

q
A0)Xpdp = > AXpdit =
=0
: NG
= (O AXpdp)Jp =
=0
for k=0,1,2,..., N — g and from the second equation of

(7) it is obvious that the columns of XpJ% are linearly in-
dependent sequences over any interval £ =0,1,2,..., N >
n. A

The above theorem is not giving a complete basis for the
behavior of (2). This will be more clear after the following
discussion

Definition 1 The dual AR-representation of (2) is de-
fined as

A(o)zy, =0, k=0,1,2,..,N —q (10)

where A(0) = 09A(0~ 1) = Ago? 4+ A1o' + ...+ A, is
the dual matriz of A(o).

Notice that due to the fact that Ay # 0, the dual matrix
will be of order q. We give now a very interesting lemma

Lemma 2 Let xz, be a solution of (2) then the sequence
Tp =xN_%, k=0,1,2,...,N is solution of the dual AR-
representation (10).

Proof. Let x;, be a solution of (2). Then using (2)

A(U).’fk = Aoi'k+q + Alzf'k+q,1 + ...+ quf’}k

=AoTN pq+A1ZN pqr1+ ...+ AN =0
for k=0,1,2,...N—q. 1

Of course by duality the inverse of the lemma also holds,
Le. if Zj is a solution of (10) then the sequence zy := Ty _x
is a solution of (2). This simple observation defines an one



to one mapping between the solutions of the original equa-
tion (2) and its dual (10). It is clear that these two equa-
tions have the same set of solutions, but reversed in the
time direction. We can say that the dual equation is iden-
tical to the original one but it is written in the reverse time
direction, i.e. if xg,x1,...cy_1,ZN 18 a sequence satisfy-
ing (2), then the “reversed” sequence Zy,TN_1,-.-, L1,%0
satisfies its dual (10).

The above lemma proves that the columns of XpJ 1];3 do
not suffice to form a basis of B. This is because there are
solutions of the dual equation (10) and hence according
to the previous lemma of the original one (2), which do
not, correspond to some finite eigenvalue of A(c). These
are the solutions corresponding to the eigenvalues of A(U)
at 0 = 0. It is known (see e.g. [8]) that if A¢ is an
eigenvalue of A(c) then A\y' is an eigenvalue of A(0).
Thus the non-zero eigenvalues of A(U) are giving rise to
some finite spectral pair of A(o) corresponding to )\61,
which is obviously contained in (9). The problem is that
the dual matrix A(c) might have an eigenvalue at o = 0,
which obviously can not be inverted. The finite eigenpair
of A(U) corresponding to its zero eigenvalue is simply the
infinite spectral pair of A(¢). Thus in order to form a basis
of (2) we have to take into account the infinite elementary
divisors of A(0) as well as its corresponding spectral pair.

Consider equation (2) or equivalently the more detailed
form (1). Then one can write this equation in the following

form
RN+1(A)£’N+1 :0 (11)

where Ry11(A) is the resultant matrix of A(¢) having
N + 1 block columns

Ao Ay A, O - 0
0 Ay Ay -+ A, T
Ryia(A)=1| o ! (12)
0 - 0 Ay A A,

where Ryy1(A) € RrV—g+L)xr(N+1)  5nd INt1 =
[ 28 o - o 2 | 2T 7 e wr®+D. Obvi-
ously equations (2) and (1) are equivalent to (11) in the
specified time interval £k =0,1,2,..., N.

With this simple remark and using the theory for the
kernels of the of resultant matrices of a polynomial matrix,

we can state the following very important

Theorem 3 The behavior of the AR-representation (2)
over the finite time interval k =0,1,2,...,N is
B = span|Xr, X {5 @ JNF} (13)
and
dimB =rq

where r,q are respectively the dimension of A(o) and the
mazimum order of o in A(o), (Xp,JJr) is a finite spectral
pair of A(0) and (Xoo, o) 8 an infinite spectral pair of
A(o).

Proof. Consider equation (11). Obviously the solution
space of this equation is the kernel of Ry 11(A). Then the
behavior of (2) is clearly isomorphic to the solution space
of (11), i.e.

B~ KerRyi1(A) (14)

But from theorem 1.1 in [10] we have as a special case that

KerRyi1(A) = Imcol(XpJi) o ® ITm col(Xoo JX DN,

(15)
The dimensions of Xp, Jp, X, Joo are r Xn, n xn, r X i
and 4 X p respectively, where n = deg|A(0)| is the total
number of finite elementary divisors , p is the total number
of infinite elementary divisors (multiplicities encountered
for in both cases) and n+ = rq (see [8]). Furthermore it
is known [8] that the columns of col(XpJh, Xoo JY O,
are linearly independent. On the other hand from the

regularity assumption of A(c) we have
rankRBy.1(A) = (N — ¢+ Dr

(this is a well known result, see for example [11] exercise
4.10) and thus

dim KerRy41(A) =7rq (16)
Obviously (14),(15) and (16) prove that the columns of

the matrix
[Xp, X {5 @ JYF}

form indeed a basis of B and consequently dim B = rq. H

It is clear that the solution space B can be decomposed
into two subspaces the one corresponding to the finite
eigenstructure of the polynomial matrix and the other cor-
responding to the infinite one, i.e.

B=Br®Bg

where Br = Imcol(XpJi)N,
and Bg = Imcol( X, JY ), (the subscripts F, B are
the initial of the words Forward and Backward)

The first part Bpr gives rise to solutions moving in the
forward direction of time and reflects the forward propa-
gation of the initial conditions o, #1,...,24—1, while the
second part Bp gives solutions moving backwards in time,
i.e. from N to 0.

This discussion should be compared to that in [1], [2],
[3]. Notice that the above decomposition of the solution
space into forward and backward subspaces, corresponds
to a maximal forward decomposition of the descriptor
space in [3].

A very interesting problem is to determine a closed for-
mula for the solution of (2) when boundary are given. The
reason why we have to choose both initial and final con-
ditions is obvious, after the above discussion about the
behavior of (2).

Theorem 4 Given the initial conditions vector &y —=

[ 2 o - qu71 1T € R and the final conditions



vector &p = [ TR o1 TN gu9 25 1T e v, (2)

has the unique solution

o= XpJbMp XoodN *M,, | [ o } (17)

P

fork=0,1,2,...,N, iff the vectors &;,Tp satlisfy the com-
patibility boundary condition

[;C; } Eker[ } (18)

where Mp € ™%, My, € R**" are defined by

Mp
My

JN T My
— M.

—Mp
JN-a+1pp

} = (col(XpJp ', XooJ HI_) ™t € R™7 (19)
Proof. Every solution z; ,k = 0,1,2,...N of (2) will be
a linear combination of the basis of B, i.e. there exists a
vector ¢ € N2 such that

ae=[ Xp Xoo |{Jp®IN ") (20)

for k=0,1,2,...,N. Our aim is to determine  in terms of

the given initial - final conditions. The initial conditions

vector will be given by (20) for £ =0,1,2,...¢ — 1. Thus
i1 = col(XpJ', Xoo JN I,

(o0}

or equivalently

I, 0
0 JN-at

iy :Q[ ¢ (21)

where the matrix Q = col(XpJp ', Xoo % H)L, in the
above equation is invertible (see decomposable pairs in
[8]). At this point it would be useful to partition { =
[ ¢& ¢Z 17, where (r and (. have appropriate dimen-
sions. Now from (21) using the definition of Mg, M., in
(19) we obtain

Cp = Mpiy
I = Moody

(22)

Notice that (22) determines (r but not (. Following
similar lines for the final conditions vector we obtain

Coo

N—qg+1
JF 1 gF -

Mo zp

Mpzp

(23)

Similarly (23) determines ¢, but not {r. Now using the
first equations in (22) and (23) we obtain

_ gF _ MF 0 .’f,’[
- - 0 My Tp
which in view of (20) gives the solution formula (17), and

combining the second equations in (22) and (23) we obtain
the boundary compatibility condition

JN T Mp ir
— M Ir

_MF
JN -

which is obviously identical to (18). H

Notice that equation (18) plays the role of the boundary
mapping equation in [2] and it can be considered as a
direct generalization of it. Equation (18) summarizes the
restrictions placed on the end points by the system and
with an appropriate choice of boundary conditions by (17)
we can determine uniquely all the intermediate values of
Tr.

For simplicity of notation and following similar lines
with [2], we set

JN T Mp
_Moo

_MF

2r
€ RraxErd
N—qg+1
JN=a+ M

Z(0,N) =

and we prove the following
Theorem 5 rankZ(0,N) = rq.
Proof. We set

N =col(XpJit, XooJL YL,

(o0}

I, 0
Ix-1% 2]
Now, postmultiply Z(0, N) by diag{/N,N} which has
obviously full rank and use (24). We have

then from (19) we have

[MF

e (24)

N 0
Z(0,N) [ 0 N } =
(a0 -, 0
B 0o -1, 0 JN-atl

Obviously the matrix on the right hand side of the above
equation has full row rank and hence

rankZ(0,N) =rq (25)

|

This result should be compared to theorem 1 in [2],
where it is proved that a boundary mapping matrix of full
rank exists if and only if the corresponding descriptor sys-
tem is solvable and conditionable. In our case the system
is obviously solvable, since we have already determined a
solution and conditionable since we have proved that the
boundary conditions satisfying (18) characterize uniquely
the solution. However solvability and conditionability of
(2) can be easily checked using rank tests as in [1], but in
our case due the regularity of A(¢) this would be trivial.

It is important to notice here that (25) implies

dimker Z(0, N) =rq=dim B

which means that the initial and final conditions vectors
are chosen from a rg—dimensional vector space. Thus rq is
the total number of arbitrarily assigned values, distributed
at both end points of the time interval. The connection
between dimker Z(0, V) and dim B is obvious.



4 Example

In order to illustrate the above results we shall give an
example which exhibits only backward behavior. This is
done for brevity reasons, while it is well known that the
finite eigenstructure of A(o) gives rise to forward linearly
independent solutions (see for example [8]). So consider
the unimodular polynomial matrix

A= 7 |

Obviously there are no finite elementary divisors and thus
no finite spectral pairs, since det A(¢) = 1. Consider also
the AR equation

Alo)z; =0
for k = 0,1,2,...N — q. According to the notation used
earlier we have ¢ = 2 and » = 2 and thus we have to
expect
dimB =rq=4

Indeed, consider an infinite spectral pair of A(o)

10 0 0}7(]00:

XOO:[O 0 -1 0

[en R el en B en]
oo O
OO = O
O~ OO

Then according to theorem 3, a basis of B=Bg is
formed by the columns of the matrix

V(k) = X JN F=
_ On—r ON—k—1 ON—k—2 ON_p—3
0 0 —6N—t —ON—p—1

where §; = 0 for ¢ # 0 and §p = 1. The boundary mapping
equation will be

Z(07 N) = [_MOO7 Jgiq_‘_lMOO]

since there is no finite spectral pair. Now if we can see
that

0 0 1 0
1 0 0 O
Moo = 0 0 0 -1
0O -1 0 O

and thus for N > 4, we have JY 91 =0

0O 0 -1 00 0 0O
-1 0 0 00 0 0O
20, N) = 0O 0 0 100 0O
0O 1 0 0O0O0O0O

which has full row rank. Obviously by (18) the final con-
ditions can be freely assigned while for IV > 4 the initial
conditions must be zero. This is natural because, the in-
finite spectral pair of A(o) gives rise to reversed in time

deadbeat modes, which after four steps of backward prop-
agation of the final conditions, become zero. The inter-
mediate solution formula can be obtained by (17)

= XoodN FMoip =
_ ON—p—1 —O6N—k-3 ON—k —ON_k—2 ip
0 5N7k71 0 5N7k

where no initial conditions are involved because there is
no finite spectral pair of A(o).

5 Conclusions

In this note we have determined the solution space or the
behavior B of the discrete time Auto-Regressive represen-
tations having the form A(o)z; = 0, where the matrix
A(0) is a square regular polynomial matrix and zy, is vec-
tor sequence over a finite time interval &k = 0,1,2,.., N.
The solution space B is proved to be a linear vector space,
of dimension equal to the product of the dimension r of
the matrix A(c) and the highest degree of 0 occurring in
the polynomial matrix.

It is also shown that the behavior can be decomposed
into a direct sum of the forward and backward subspace,
which corresponds to a maximal F/B decomposition of the
descriptor space in [3]. We have also determined a basis
for the solution space, using a construction based on both
the finite and infinite spectral structure of A(c).

We introduce the notion of the dual AR representation
which is simply the same system but with reversed time
direction. Finally, a generalization of the boundary map-
ping defined for first order systems in [2], to the higher
order case is given and it is shown that such a boundary
mapping can be obtained in terms of the spectral pairs of

Alo).
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