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Abstract

The algorithms required for the solution of several prob-
lems in the study of linear multivariable systems, can be
proved to be a very tedious task and usually only a few
trivial examples can be entirely worked out manually in
a reasonable time. A package containing some basic algo-
rithms for the study of linear systems, implemented via
Maple V, is presented here as a very useful tool mainly
for educational purposes.

1 Introduction

The study of linear multivariable systems is one of the
most important issues in control theory. For the study of
state space systems or even generalized state space sys-
tems, there exist several algorithms which can be used
to solve analysis or design problems. This is because a
state space description is nothing more than a quadru-
ple of real constant matrices A, B,C, D and thus numer-
ical algorithms, having as input these matrices, can be
used. For the study of polynomial matrix models we can-
not use directly numerical algorithms, but there are two
alternatives. The first alternative is to use polynomial ma-
trix theory to implement directly algorithms using some
symbolic computation package like Maple V, Macsyma or
Mathematica. The second one, is to reduce the polyno-
mial matrix description to a (generalized) state space form
using some known realization method and then to apply
numerical algorithms (using for example Matlab) for the
study of the equivalent systems. However, even in this sec-
ond case we need a reliable symbolic algorithm to convert
the original system to its reduced equivalent.

Numerical algorithms are very efficient and fast com-
paring to the symbolic ones and thus they are much more

attractive for real time applications or industrial use. On
the other hand symbolic algorithms are more accurate and
able to manipulate directly polynomial matrices, which is
the case here. This second feature is the one that makes
them very attractive for educational purposes.

In this paper we present a package implemented in
Maple V, which contains some basic algorithms mainly
for the analysis of polynomial models such as extraction
of greatest common divisors, determination of matrix frac-
tion descriptions of rational matrices, state space realiza-
tions, etc. Similar works using Maple V can be found in
[6], [7], [5]. The aim of the paper is to show the power
of symbolic packages for the manipulation of polynomial
matrices, which are the basic tools for the study of linear
systems in the frequency domain.

2 The package

This package was implemented in Maple V - release 3 and
contains some procedures mainly for the analysis of poly-
nomial models. Here we shall present only the basic ones,
while the rest of them are simply auxiliary functions used
internally by the algorithms. The complete listing of the
procedures can be found in the appendix at the end of
the paper. All the examples were worked out on a Pen-
tium 75MHz machine with 16MB of main memory. The
package should be loaded using the command

>read ’linsys.m’;

In all the algorithms s is considered to be the indeter-
minate of the polynomials and thus the symbol s should
remain unassigned. In order to unassign the symbol s we
can use the following

>s5:="s8";

or equivalently

>unassign(’s’);



It is also important to notice here that all these pro-
cedures require the Maple’s package for Linear Algebra.
This can be loaded as follows

>with (linalg);

The first two algorithms compute the right or left great-
est common divisor of two polynomial matrices.

gerd (A,B) - gcld (A,B): compute the right (resp.
left) greatest common divisor of the polynomial matrices
A,B. The method used here (see for example [1], [2]) per-
forms row (resp. column) elementary operations to reduce
the block matrix

5| e a8

to the form
[ Cér } (resp. [G1,0])

where Gr ( resp. Gl) are square triangular matrices.
Then Gr and Gl are respectively the right and left greatest
common divisor of A, B. The number of columns or rows
respectively of the matrices A,B must equal otherwise we
get the error message ”incompatible matrix dimensions”.

Example 1 Consider the following two matrices

>A:=matrix([[s"2+1,5+2],[s-1,0]]);

A [ 382:1 332 }
>B:=matrix([[s+1],[s-1]]);
=[]

>Gl:i=gcld(A,B);

5 0
Gl:|: 6 6:|

>N

The next two procedures compute a coprime matrix
fraction description, i.e. a numerator and a denominator
matrix, of a rational transfer function.

mfrd(R) - mfld(R): result a pair of polynomial ma-
trices which are the numerator and the denominator (re-
spectively right or left) of the rational matrix R, i.e.

R= NgD.'or R=D;'Ng

and furthermore Ng, D (resp. Ni, Dy) are right (resp.
left) coprime. These two algorithms use the gerd and geld
routines to derive a coprime numerator and denominator
(for more details on the method used here see [4]).

Example 2 Consider the following

>R:=matrix([[(s"2-s)/(s+2),5+1/s], [0,5/ (s+1)+3]]);

52— s 1
S+ —
R = s+ 2 s 5
0 +3
s+1
>T:=mfrd(R);
[ s2—s5 S£+s2+s+1 s+2 0
a 0 452 4+ 3s ’ 0 s2+s
>Nr:=TJ1];
Ny o— s2—s 83482 454+1
o 0 45?4 3s
>Dr:=T[2];
s+ 2 0
Dr = [ 0 8215 }
>evalm(Nr&*inverse(Dr)); <« {verify that R =
NrDr—1}
s(s—1) $2+1
s+2 s
45+ 3
s+1
> M

The following procedures results a column or row re-
duced form of a polynomial matrix

colreduce(P) - rowreduce(P): return as result two
matrices. The first matrix is the column (resp. row) re-
duced form of the polynomial matrix P, while the second
one is a unimodular matrix which post- (resp. pre-) mul-
tiplies P to obtain its column (resp. row) reduced form.
The method used here (see [3] or [1]) applies elementary
column (resp. row) operations to reduce the column (resp.
row) complexity of P until it reaches its lower bound which
is the dertminental degree of the matrix.

Example 3 Consider the following

>P:=matrix([[s"2+1,5" 104+s+1],[0,s-
1]]);+— {obviously the column complexity is 2 + 10 =
12 > deg|P| =3}

2 10
| s+1 sV +s+1
P T
>T:=colreduce(P);
—8 s24s+1
r _[—s—l—l s—1 ’
[—32—0—34—36—0—38—0—1 32—34—0—36—38}
-1 1

>PR:=T|[1];+— { Now it is obvious that the complexity
is14+2=3}

—S8

—s5+1

2
PR::[ s—l—s—l—l}
s—1



>U:=T[2];

B L L
-1 1

U —82—|—S4

>det(U);«— { U is unimodular}
1
>evalm(P&*U);«— { verify that PU = P.}

s24s+1
s—1

—5
—s5+1

>N

The following algorithms perform several types of real-
ization of a given rational matrix transfer function.

spreal (P) :
namely A, B,C, as a minimal state space realization of
the strictly proper matrix transfer function P, ie. A4, B,C
satisfy

This function returns three matrices,

P=C(sI - A)!

and the pairs (4, B) and (A, () are respectively con-
trollable and observable. The method is similar to these
proposed in [3] and [1] and it is based on the derivation of
coprime matrix fraction description of P, whose denomina-
tor is in a column reduced form. This procedure internally
uses all the above functions to obtain the realization.

Example 4 Consider the following

>P:=matrix([[0,1/(s+1)],[-1/(s+1),1/s]]);

0 1
P .= |: 1 541
_s+1

o [t

>T:=spreal(P);

-1 0 0 1 0
T=0 0o 1 |, 0(),[?1? 1}
0O 0 -1 0 1
>A:=TI1]
>B:=T[2]
>C:=T]2)
>evalm (C&*inverse(s*I1d(3)-A)&*B) {verify that
P=C(sI — A)"1B}
|: 0 sj—l
1 1
s+1 s
> M

polreal (P): Returns a 'pure’ generalized state space
realization of the polynomial matrix transfer function P.
The procedure results three matrices namely F, B, C, such
that
P=C(E-I)"'B

Furthermore F is nilpotent and the block [F, B,
[ET,CT]T have full rank, which means that the realiza-
tion is controllable and observable at s = 0o. The method
used for this type of realization can be found in [1] and is
based on the state space realization of the strictly proper
transfer function

Example 5 Consider the polynomial matriz

>P:=matrix([[s"2+1,5-2],[s+1,5-1]]);

241 s5-—2
P'_[ s+1 s—1
>T:=polreal (P);
01 0 0O 0 0
001 00O 0 0
00000]|,|-1 0],
0 0 0 0 1 0 0
0 0 0 0O 0 -1
1 01 1 =2
01 1 1 -1
>E:=T[1]:
>B:=T[2):
>C:=T[3]:

>evalm(C&*inverse(s*E-1d(5))&*B);«—{ verily
P=C(sE—1)'B)}
s—2
s—1
> M

The last procedure performs an irreducible generalized
state space realization of a general rational transfer func-
tion.

realize(P) :returns a quadruple of matrices £, A, B, C
such that

that

241
s+1

P=C(sE - A)!

where P is the given rational matrix transfer function.
The procedure decomposes P into two parts as P = P+
Py, where Py, is the polynomial part of P and Py, is the
strictly proper part of P. The result follows simply (see
[1]) from

sl —A 0 B
0 §Aco — 1 Boo

Example 6 Consider the rational transfer function

[, Cu) [

>P:=matrix([[(1-s)/(s+2),s"2+1/s],[0,54+3]]);

1—s 2+1

— S —

P=1] 542 s
0 s+ 3




>T:=realize(P);

1 0 0 0 O -2 0 0 0 O
01 0 0 O 0 0 0 0 O
T=|looo1o0|,l 0 010 0],
0 0 0 0 1 0 0 0 1 0
0 0 0 0 O 0 0 0 0 1
1 0
(1) (1) 31 1 0 0
0 0 0 0 0 1 3
0 -1
>Ep:=T[1]:
>A:=T[2:
>B:=T[3]:
>C:=TH]:
>evalm(C&*inverse(s*Ep-A)&*B);«—  {verify that
C(sE—A)"'B="P}
s—1 241
s+2 ]
0 s+3
>N

3 Conclusions

In the past symbolic computations was a very difficult
task, which was carried out exclusively by mainframes or
supercomputers. Today’s progress of computer technol-
ogy allows the usage of symbolic packages even in a cheap
personal computer. Several software packages, like Maple,
Mathematica and Macsysma, provide a user-friendly envi-
ronment and a high-level programming language, for the
development of specialized routines. These features make
them very attractive for the implementation of algorithms
which can be used either for analysis, design or educa-
tional purposes, in the field of control theory.

The aim of this note is to present some first steps to-
wards this direction. We have constructed a small but very
useful Maple package which contains algorithms for basic
polynomial matrix calculations such as GCDs, MFDs etc.
Using these basic procedures and the existing theory we
implemented a generalized state space realization algo-
rithm. The algorithms used in all these procedures can be
very complicated and only trivial examples can be entirely
worked out manually. Thus the help of such a tool, in the
study of linear multivariable systems can be proved to be
invaluable.

4 Appendix

findmin:=proc(A:array,j:nonnegint)
local f,i,p,mn,wmn;

p := rowdim(A);

wmn = j;

mn := infinity;

for i from j to p do

{ := degree(A[,j],s); if { < mn and Ali,j] <> 0 then mn
=f wmn :=1ifi

od;
wmn

end
elim:=proc(A:array,j:nonnegint)
local t,i,r,p,wmn;

p := rowdim(A);

t = A;

while not iszero(col(delrows(t,1 ..
wmn = findmin(t,j);

t := swaprow(t,j,wmn);

for 1 from j+1 to p do t := addrow(t,j,i
od;
t := map(expand,t)
od;
evalm(t)

end

gerd:=proc(A:array,B:array)

local T,p,m,j,G;

if coldim(A) <> coldim(B) then ERROR(‘Incompatible
matrix dimensions) fi;

T := blockmatrix(2,1,A,B);

p := rowdim(T);

m := coldim(T);

G :.=T;

for j to m do G := elim(G,j) od;

G := delrows(G,m+1 .. p)

end

gcld:=proc(A:array,B:array)
transpose(gerd(transpose(A ), transpose(B))) end
mfrd:=proc(R:array)

local Rn,De,Den,Num,G,i,j;

Rn := map(simplify,R);

De := map(denom,Rn);

Den := diag(seq(lcm(seq(col(De,j)[i],

i=1.. rowdim(De))),j =1 .. coldim(De)));

Num := map(expand,evalm(Rn &* Den));

G := gerd(Num,Den);

if 0 < degree(det(G),s) then

Num := map(expand,evalm(Num &* inverse(G)));

Den := map(expand,evalm(Den &* inverse(G)))

fi;
evalm(Num),evalm(Den)

end

mfld:=proc(R:array)

local t;

t := mfrd(transpose(R));
evalm(transpose(t[1])),evalm(transpose(t[2]))
end

coldeg:=proc(A:matrix,c:nonnegint)

local n,d,co,i,de;

co := col(Ac);

i))) do

,—quo(t [17.]] 7t [.] 7.]] 78))



n := rowdim(A);
d := -infinity;
for i to n do

de := degree(expand(coli]),s); if d < de then d := de fi

od;
d

end
highcol:=proc(A:matrix)
local p,m,d,i,Ah,j,de;

m := coldim(A);

p := rowdim(A);

Ah := matrix(p,m);

d := matrix(m,m,0);

for i to m do

de := coldeg(A i);

d[i,i] := s"de;

for j to p do Ah[j,i] := coeff(expand(A[j,i]),s,de) od

od;
evalm(Ah),evalm(d)
end

colreduce:=proc(A:matrix)

local tA,Ah,U,p,m,fr,N,md,wmd,d,i,No,t;

tA = A;

p := rowdim(A);

m := coldim(A);

U := array(identity,1 .. m,1 .. m);
fr := min(p,m);

t := highcol(tA);

Ah := evalm(t[1] &* t[2]);
while rank(Ah) < fr do

N := eval(kernel(Ah)[1]);
md := infinity;

for i to m do

d := degree(N[i],s);

if d < md and N[i] <> 0 then md := d; wmd := i fi

od;
No := N[wmd];

N := scalarmul(N,1/No);

for i to m do

if 1 <> wmd then

tA := evala(addcol(tA,i,wmd,N[i]));
U := evala(addcol(U,i,wmd,N[i]))

fi
od;
t := highcol(tA);

Ah := evalm(t[1] &* t[2])
od;
evalm(tA),evalm(U)

end
rowreduce:=proc(A:matrix)
local tA;

tA := colreduce(transpose(A));
transpose(tA[1]),transpose(tA[2])
end

makeS:=proc(A:matrix, Nu:matrix,De:matrix)
local v,Ss,Ac,Bh,Ch,tA k.j,i,t,p,mn,1,tNu;

tA := map(expand,A);

tNu := map(expand,Nu);

p := rowdim(Nu);

m := coldim(A);

n := 0;

for 1 to m do v[i] := coldeg(De,i)-1; n := n+v[i]+1 od;
Ac := matrix(m,n,0);

Ss := matrix(n,m,0);

Bh := matrix(n,m,0);

Ch := matrix(p,n);

1:=1;

for j to m do

Bh[l4+v[jl.j] := 1;

for k from O to v[j] do

Ss[l+k,j] := s"k;

for 1 to m do Ac[i,l+k] := coeff(tA[i,j],s,k) od;

for 1 to p do Chli,l4k] := coeff(tNuli,j],s,k) od

od;
1:=1+v[j+1
od;
evalm(Ac),evalm(Ss),evalm(Bh),evalm(Ch)

end

spreal:=proc(R:matrix)

local
temp,p,m,i,Ao,Bm,Ss,Lp,Am,Bh,Dbc,Aht,Bht,Cht,De,Nu;
if iszero(R) then ERROR(‘Cannot realize identicaly zero
matrix’)

fi;

temp := mfrd(R);

De := map(expand,temp|2]);

Nu := map(expand,temp[1]);

temp := colreduce(De);

Nu := map(expand,evalm(Nu &* temp[2]));

De := map(expand,temp[1]);

p := rowdim(Nu);

m := coldim(De);

temp := highcol(De);

Bm := inverse(temp|1]);

Lp := map(expand,evalm(De-(temp[1] &* temp[2])));

Ao := JordanBlock(0,coldeg(De,1));

for i from 2 to m do

Ao := diag(Ao,JordanBlock(0,coldeg(De,i))) od;

temp := makeS(Lp,Nu,De);

Dbc := temp[1];

Am := evalm(-(Bm &* Dbc));
Bh := temp|[3];

Ss := temp|[2];

Cht := temp[4];

Aht := evalm(Ao+(Bh &* Am));

Bht := evalm(Bh &* Bm);

evalm(Aht),evalm(Bht) evalm(Cht)

end

polreal:=proc(P:matrix)

local R;

if iszero(P) then ERROR(‘Cannot realize identicaly zero
matrix‘) fi;

R := scalarmul(map(x -> subs(s = 1/sx),P),1/s);

R := map(simplify,R);



R := spreal(R);
evalm(R[1]),evalm(-R[2]),evalm(R[3])
end

Id:=j->array(identity,1..j,1..j);
separate:=proc(A:matrix)

local p,m,Hpol,Hsp,tA d,n,i,j,Af,Ai;
tA := convert(A rational);

p := rowdim(A);

m := coldim(A);

Hpol := matrix(p,m);

Hsp := matrix(p,m);

for i to p do

for j to m do

d := denom(tA[Lj]);

n := numer(tA[i,j]);

Hpol[i,j] := quo(n,d,s);

Hspli,j] := rem(n,d,s)/d

od
od;
evalm(Hpol),evalm(Hsp)

end

realize:=proc(R:matrix)

local T,Ai1,Af Ep,A,B,C,n,mi;

T := separate(R);

n := 0;

mi := 0;

if not iszero(T[1]) then Ai := polreal(T[1]);

mi := rowdim(Ai[l]) fi;

if not iszero(T[2]) then Af := spreal(T[2]);

n := rowdim(Af[1]) fi;

if 0 < n and 0 < mi then

Ep := diag(Id(n),Ai[1]);

A = diag(Af[1],Id(mi));

C := concat(Af[3],Ai[3]);

B := stack(Af[2],Ai[2])

elif n = 0 and 0 < mi then Ep := Ai[l];

A = 1d(mi); C := Ai[3]; B := Ai[2]

elif mi = 0 and 0 < n then Ep := Id(n);

A = Aff1]; C:= Af[3]; B := Af[2]

else ERROR(‘Cannot realize identicaly zero matrix)
fi;
evalm(Fp),evalm(A),evalm(B),evalm(C)
end
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