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Abstract

The main objective of this paper is to determine a closed formula
for the forward, backward and symmetric solution of a general discrete
time AutoRegressive Moving Average (ARMA) representation. The
importance of the above formula is that it is easily implemented in a
computer algorithm and gives rise to the solution of analysis, synthesis
and design problems.
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1 Introduction

Consider a nonhomogeneous system of linear dicerence and algebraic equa-
tions described in matrix form by

A(o)yr = B(o)ux (1)
where o denotes the forward shift operator i.e. o'y = yr.,

A(o) = Ag+ Ao + ...+ Ao € Rlo]™", rankpy)A(o) =r
B(c) = By + Byo + ...+ B,o? € R[o|™™

where at least one of A,, B, is nonzero, y;, : ZT — R" is the input and
ug : ZT —R™ is the input of the system. Following the terminology of [16]
we call the set of equations (1) an ARMA representation of B, where B is
the solution space of the system de..ned by

B = 7Ty(Bf)
with

By :={(yr wy):Z" —R" x R™|(1) is satis..ed Vk € Z*}
and m, : R" x R™ — R is given byﬂ'y( Yr Uk ) = Y

In case where A(o0) =cE — A € Ro|"”*" and B(o) = B € R™*™ then the
ARMA representation (1) is the known generalized state space representa-
tion, i.e.

Expy = Az, + Buy @3]

while in case where det [E] # 0, (2) is the known state space representa-
tion. For a survey of singular systems of the form (2) see [7].

ARMA representations of the form (1) ..nd numerous applications in
analysis of circuits [12], neural networks [2], economics (the Leontiea model,
see [9]) and power systems [14].

The solution of the ARMA-Representation (2) has been calculated by
many dizcerent techniques ([1], [6], [10], [13], [15]), and among them we dis-
tinguish [8] and [11]. This teghnique gives a solution of the singular system
representation in terms of the fundamental matrix ¢, and the backward fun-
damental matrix 7, of (zE — A)~". Following similar lines with [8], [11] we
produce in section 3 a closed formula for the forward, backward and sym-
metric solution of the general ARMA-Representation (1) in terms now of the
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fundamental matrix H;, and the backward fundamental matrix V; of A(s)™.
A generalized Leverrier technique for computing the forward fundamental
matrix is available [3], so that we may assume that this fundamental ma-
trix is given. We shall show in section 2 that the backward fundamental
matrix is the forward fundamental matrix of the dual polynomial matrix
A(o) = Ago? + Ayo® 4 --- + A, of A(s) and thus we may assume that V,
is also given. The whole theory is illustrated via an example in Section 4.

2 Preliminary Results

We are concerned with the discrete time ARMA-representation (1) where
ye € R", up, € R™, k = 0,1,...,N —q. We assume that A(o) is regular
i.e. det A(o) # 0 for almost every s. Given regularity the Laurent series
expansion about in..nity of A(s)~! exists and is given by

Alo)™ = Hy 0% + Hy 10" 4+, |o| > p>0 3)

where ¢, is the greatest order of the zeros of A(c) at 0 = oo and the
sequence { Hy} is known as the forward fundamental matrix [3]. The Laurent
expansion about zero of A(s)~! exists and is given by :

Alo) 7 =Vo "+ Voo™ 4+, o] <p 4)

where the sequence {V}} is known [8] as the backward fundamental matrix.

The Laurent expansion about zero of A(s)~! given in (4) is related with
the Laurent expanion about in..nity given in (3) of the inverse of the dual
matrix A(c) = Ago?+A 0%+ -+ A, of A(c) as we can see in the following
lemma.

Lemma 2.1. Let the Laurent expansion about in..nity of A(c)~" is

A(U)_l e ng'f + Elf_lo-f—l + e + ﬁlo- + go + g_lo_—l + L (5)
and (4) is the Laurent expansion about zero of A(c)~!. Then

g+ f=Ctand V. ;= H ;s fori=¢,¢—1,..,1,0,—1,.. (6)
Proof. We have that



Alo)=0"A (L) & Al0) =0 1A ()1 E
Alo)y P =071 [I:[fa*f + Hp o1+ 4. ]
fnd F[fo'quf + ﬁf7107q7f+1 + R
=V o7t + V,g+10'_“+1 +- -

Equating the coe€cients of the powers of o we obtain the proof of Lemma
21l.m

A direct result from Lemma 2.1 is that the Leverrier algorithm in [3] may
be used for the computation both of the forward and backward fundamental
matrix.

An interesting result which connects the solutions of the ARMA-representation
(1) and the ones of the dual discrete time ARMA-representation :

Agi + Aqa1Uky1 + - - -+ Aolkyq = Byt + By_1lgq1 + - - - + Boligyq  (7)

in the closed interval [0, N] is given by the following :

Theorem 2.2

(a) If g, is a solution of (7) for the nonzero input a; then the sequence
yr = Un_x 1S @ solution of the dual equation (1) for the nonzero input u; =
aN—k-

(b) If y; is a solution of (1) for the nonzero input wu; then the sequence
Ur = yn_x 1S @ solution of the dual equation (7) for the nonzero input u;, =
UN—-

Proof. (a) Let g, be a solution of (7). This implies that (7) is satis...ed.
Now consider the equation (1). If we set y, = ynv_r and u;, = uy_j and take
into account that yiy; = JN—(k+j)> Uk+j = UN—(k+j), J = 0,1,..,q We have

~ d ~ N < ~ UR=UN—k ~
A(0)IN-k = ;)Ain—k—i - %BiUN—k—i = B(o)un_s ®
which veri..es the ..rst part of the Theorem.
(b) Following the same way we can show the second part of the Theorem. &
A direct result from the above theorem is that the backward solution of
the ARMA-representation (1) comes directly from the forward solution of
the dual ARMA-representation (7).



3 Solutions of ARMA-Representations
There are three dicerent interpretations of the equation (1) [8] :

e We may consider that the initial conditions {yo, y1, ..., y,—1} are given
and that is desired to determine y, in a forward fashion from the input
sequence and the previous values of the output.

e We may consider that the ..nal conditions {yn, yn_1,..., Yn—q+1} are
given and that is desired to determine y; in a backward fashion from
the input sequence and the future values of the output.

e \We may consider (1) as a relationship between the inputs and outputs
i.e. economics, and thus no causality is assumed. It is desired to
determine vy, for the values k = ¢,q+1, ..., N —q, in terms of the input
sequence and the initial and ..nal conditions. We could call this the
symmetric solution of (1).

3.1 The Forward Solution of ARMA-Representations

Consider the discrete time ARMA-representation (1) where A(o) is regular
i.e. det A(o) # 0 and the Laurent series expansion about in..nity for the
resolvent matrix exists and is given by (3). Then we have

Theorem 3.1

The whole response of the system (1) will be :

Aq 0 .- 0 Yo
A _1 A .- 0 U1
Y = [ H g Hojpgn H_ } ! : ! : : @)
A Ay Ay Yq—1
+ [ Hoy Hopna Hy Hy, |
BQ Bl ce Bq 0 0 Uo
0 By B B, 0 Uq
X ) :
0O --- 0 By B --- B, Uk, +q

or equivalently



q k+4r q

Yk :ZZH—k —1 ]y] z+ ZZH—k+zB UH-] Wlth k*q Q+1 (10)

=1 j=1 =0 j5=0

Proof. Equating the coe@cients of the powers of ¢ in the relation A(o) x
A(o)~t = I, we have that

ZAHHL_cSI or ZHHLA = 6;1, (11)
n=0

where ¢; = 0 for i £ 0 and 6, = 1. Now substituting y; from (10) in (1)
we have that

k+4r q
A( yk = ZZH—k i ]y] — T Z ZH—k-‘rzB WUitj| =
i=1 j=1 =0 j=0
q q q q k+n+gr gq
= Ap ZZH—k iAjyj—i + ZA Z ZH—k—n+iBjui+j =
n=0 i=1 j=1 n=0 =0 j5=0

q q
= Z Z D (AnH ) Ajysit
q ) q q q q
+ Z AnH—k—n Z BjUj+Z AnH—k—n—H Z BjUj+1+' . +Z AnH—n Z Bjuj+k+
n=0 j=0 n=0 7=0 n=0 j=0
q q q q

+ Z A H Z Bjujipqpr + 00+ Z AnH i, Z Bjujigig, +- -+

n=0 j=0 n=0 =0

q
+ Z AnH _pig,41 Z Bjtjikigerr + -+ AgHg Y Bjthjikigerg =

Jj=0 §=0



q q q q q
11
= Z Z O k—iAjYj—it0k Z Bjuj+6_k+1 Z Bjuji1+--+do Z Bjuji, = B (o) u

i=1 j=1 §=0

which proves the Theorem. &

J=0

J=0

(12)

It is important to note that the discrete time ARMA-representations does
not always have a solution. A necessary and su¢cient condition such that
the ARMA-representation (1) has a solution is that the initial conditions
{Y0,Y1, ..., Yg—1} satis..es the relation (1) for £ = 0,1,..,q¢ — 1. Therefore we

de..ne:
De...nition 3.2 We de..ne as

Yi, Uj (Z_Oa]-v"vq_l)
H, H . H,_
s H_ H H, _ s
Al A
H g1 Hogio - Hy
Hy, --- H, 0
Hiu = :Al .I{_l .I{‘jr_l .]—I(jr
H g1 Hg—gr1 Hg—gi2
By B, --- B, 0 -0
0 By B, --- B, 0
X . . . . -
\ 0 --- 0 By B B,
where
Ap 0 0
s A A 0
A= |
Aq—l Aq—2 AO

0 e (13)

| Y2g+¢,—1 J

the admissible initial condition space of (1) under nonzero inputs.
Proof. Consider the relation (1) for £ = 0,1,...,¢q — 1 and write this in

the form



Ay Agr - Ap 0O o 0 Yog—1
0 A

q A, Ay 0 Y2g—2 |
0 0 Aq Aq—l AO Yo
B, B,i - By, 0 e 0 Ung—1
A R (14)
0 0 B, Boi - Bo| | u

Substitution of the values y,, y,+1, ..., Y2,—1 With the respective formula of
(9) and use of (11) give us that the initial conditions {yo, y1, ..., y4—1} Satisfy
the system if the relation (13) is satis..ed. ®

As we can see in (9) the solution of (1) is determined in terms of the
initial conditions {yo,v1,...,y,—1} and the input sequence of the system.
An obvious disadvantage is that for each succesive output y; speci.ed by
k =gq,q+1,.., the coeCcient matrices H; comprising each speci..c solution
change. Therefore if the solution is required over a comparatively large range,
say Yq, Yg+1, --, Y100 corresponding to k = ¢,q + 1,...,100, we would require
the coeC@cient matrices H_1o1, H_100, ..., H;,. An equivalent forward solution
is presented in what follows for the general solution y; depends on the previ-
ous q outputs {yx—_1,Yk—2, ..., Yk—g} @nd not on the ¢ ..xed initial conditions
{Y0,91, ---,Yg—1}- In this case the coeCcient matrices required over a solution
range is ..xed (i.e. independent of k), namely H_,, H 11, ..., H;, .

Corollary 3.3 Equation (9) is equivalent to the following forward recur-
sion :

AO 0 0 Yk—1
Al AO 0 Yr—2
o —[Hoy Hoy - H., ] : i |
Aqfl Aqu Ay Yk—q
(15)



By, B, --- Bq 0 o 0 Uk—q

0 By B --~- B, --- 0 Uk—g+1
—l—[H—q qu+1 <+ Hy - qu} : S -q - : '
0O --- 0 By By --- By Uk+G,+q
(16)
or equivalently
q i—1 qtdr ¢
Yp = — Z Z H_iAjyk_H_j + Z Z H—q+iBjuk—q+j+i (17)
i=1 j=0 =0 j=0

Proof. It is easily seen that the state vector y, will be connected with the
previous vectors {yo, y1, ..., Y4—1 } according to (9) with the following relation

A, 0 -0 Yo
A -1 A, -+ 0 W
Yqg = [ H oy Hog1 -+ H g } . ! : ' ST : +
I Al A2 e Aq yq—l
By, B B, 0 ---0 U
0 By B --- B, --- 0 Uy 11
[ Hy B oo Ho o ]| T T
I 0 .- 0 BO Bl s Bq U2g+G,-
AO O e O yq—l
A A .- 0 _
:_[H—1 H_, H—q} :1 :0 o !yq2 +
Aq,1 Aq72 et AO Yo
By By --- Bq 0 - 0 Ug
0 By B, --- B 0 Uq
+[ Hy Hgn Hy Hy J | 0 -
0 .- 0 BO Bl s Bq U2g+g,



The system is time invariant and thus the same relation will connect the
output y,, with the previous vectors g outputs {yx_1, Yk—2, ..., Yk—q - Thus if we
replace {vg, Yg—1,---» Yo} With {yi, yk—1, ..., ys—q} respectively and {ug, us, ...,
Ungrg, } WIth {ug_g, Uk—gi1, -y Ukt g+, } TESPECtively we get the relation (15). B

The advantage of the formula (15) is, as we have already mentioned, that

it depends only on the ¢g+¢,+1 Laurent expansion terms {H_,, H_,1, ..., Ho, ...,

The above formula is very usefull when we need to determine y; in the inter-
val k = q,q+1,q+2, ..., because we always have to start to compute from y,,
Yq+1, --- 1N contrast to the solution formula (9) where only the ¢ ..rst initial
conditions are required for the determination of y,. Another advantage of
(15) is that the round-ox= errors for the determination of the g+, +1 Laurent
expansion terms {H_,, H_,11, ..., Ho, ..., H; } are less than the ones for the
determination of {H_y, ..., H;. } in (9).

3.2 The Backward Solution of ARMA-Representations

Consider the ARMA-Representation (1). The Laurent series expansion about
zero for the resolvent matrix is given in (4). Then we have :
Theorem 3.4 The whole response of the system (1) will be :

Ay Ay - 0 YN-1
Y = [ Ve Ve 0 Vvekgn ] . . . .

Aq—l Aq—2 AO YN—g+1

0o --- 0 B, B, -+ By gy
or equivalently

q+k—N—{ gq

ZZVN k—i _]yN z+]+ Z ZVN k—q— ZB UN4j—i—q (19)

=0 7=0

Proof. Consider the dual ARMA-Representation (8) of (1) :
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A(o)ix = B(0) i (20)
where
121(0) = Ayo?+---+ A, 10+ A, and B(O‘) = Byo?+---+ B, 10 + B,

Consider also the Laurent expansion at s = oo from (6). Then from
Theorem 3.1 the solution of (20) will be :

Ao 0 0 Yo
] o i A A o ||
O = [Hokq Hoggn H oy | :
Aq—l Aq—2 AO gq—l
+ [ ]:I_k ﬁ—k+1 . f{O . f{f :| X
B, Byi -+ By 0 0 i
0 B B o B 0 o ©
E . . . . . . V_i:ﬁf_[+i
0 0 B, By,1 -+ By Ukt f+q q+f=t
Ao 0 0 Yo
A Ao 0 U
= [Vi Vi Vogikt | : :
Aqfl Aq72 AO gqfl
+ [ V—q+k V—q+k—1 V_g :| X
B, B, By 0 0 i
0 B, By By 0 iy
>< "
0 R 0 Bq Bq_1 -+ By ak—l—(jr-‘rq

From Theorem 2.2 we have that the solution y, of (1) for an input wu; is
given by the solution g,_, of (8) for an input @y _, and the converse. Thus
we can replace the initial conditions ;, @; of the system (8) with the ..nal
conditions yy_;, uy_; of the system (1) as well as the solution gy _, of (8)
with the solution g, of (1), which proves the relation (18). B
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A necessary and succient condition such that the ARMA-Representation
(1) has a solution is that the ..nal conditions {yn,yn_1, ..., Yn—q+1} Satis..es
(1) for k=N, N —1,..,.N —q+ 1. Therefore we de..ne :

De...nition 3.5. We de..ne as

Hy ={ysu; i =N,N—1,..,N—q+1):

V—q V—2q+1 YN
R S I
Vo4 V., YN—q+1
V., Vi, 0 - 0
1| Ve Vi Ve oo 0 1)
= A2 . . . . .
Vi o Viergr Veergs - Vi
B, By1 -+ By 0 o 0 UN
0 By, By1 -~ By -0 Un_1 \
0 0 Bq Bq,1 cee BO UN—g—0+1
where
A, 0 0
- A, 1 A 0
Az = q. :q : :
A Ay o A,

Proof. Consider the relation (1) fork = N—q, N—q¢—1, ..., N—2¢+1 and
write this in the form

Ay Aga Ao O 0 Yn
0 A Ajr - A 0 YN-1 B
0 0 Aq Ac;fl Ay YN—-2¢+1
B, By By 0 0 un
e S R R @)
6 . 0 | B(; B(;_l . Bo :LLN_Qq_A'_l



Substitution of the values yn_q, Yn—g—1, ..., Yn—24+1 With the respective
formula of (18) and use of (11) give us that the ..nal conditions {yx, yn_1,
s YN—q+1} Satisfy the system ia the relation (21) is satis..ed. B

A backward solution formula in terms of the following q terms and the
input sequence of the system is provided by the following :

Corollary 3.6.Equation (18) is equivalent to the backward recursion :

Ao 0 - 0 Yk+q
ve=[Ve Vo - Vi] f41 Ao 0 Yitat (23)
;4(1*1 ;4q72 ;40 £Uk+1
B, Byy -+ By 0 e 0 Uktq
F[ Vo Vo e V] O B B Bo e 0 s
0 o 0 B, Bya - Bo| | e
or equivalently
a-1 i ¢ q
Yr = z';o P VoiAjYrsqivj + i:ZOj;() V_iBjugiji (24)

Proof. Following similar lines with the proof of Corollary 3.3 we obtain
the result. m

The advantage of the formula (23) is, that depends only from the ¢ +
¢ + 1 Laurent expansion terms [V, V,_4,...V_,] and thus we don’t need the
continuous computation of the Laurent expansion terms which gives rise to
numerical errors.

3.3 The Symmetric Solution

In this section we consider (1) as a relation between the output ¥, and the
input u; over an interval £ = 0,1,..., N, where k£ not necessarily the time
index. Such an interpretation is used in economics and elsewhere [7],[9].
Consdier the discrete time ARMA-representation (1) and the Laurent series
expansion about in..nity for its resolvent matrix in (3). Then

Lemma 3.7
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(i) A right inverse of the matrix

Ay Aga e A0 0
Ay = |0 A e e € RIN-a+Dpx(N+1)¢
0 o 0 A Ay e Ag

is the following

H, H,, - H.y
AT],V _ quJrl qu e HfNJrl
H gwnv H gon1 -+ Ho

(ii) A left inverse of the matrix

[ Ao O 0 7
A Ao 0
T = ;4q ;4q,1 . ;40 c RW—=a+1)px(N—2q+1)¢
0 A, A
10 0 e Ay
is the following
HO H*l e H*N+q
T — H1 HO H—N+q+1
Hy oy Hn-2g-1 -+ Hy

Proof. Using the relation (11) we can easily show that Ay x A}, =1
and 7" x T = I which proves the Lemma. &

We can now show the following

Theorem 3.8 The solution of the ARMA-representation (1) in terms of
the initial and ..nal conditions, {yo,y1, .., Yg—1} and {yn,yn—1, ..., YN—q+1}
respectively, is given by the following formula :
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ye=|Hp1 Hopo -+ Hopy] : :q :Az ?q—z N
000 A | w
(25)
Ao 0 0 YN

+[ Hy Hyopr - Hyopqn | Ay f40 0 Yn-1
lAq—l lAq—2 T .AO (;JN—q-i—l
B, By By 0 0
+ [ Hyoieg Hyopoga -+ Hoy ] O B, B.ql | -B,O | O
0 0 B, Bya - Bo

or equivalently

q—1

q q i N—q q
Ye =2 > H Ayt > Hy wiAjyn—ivg+ Y > Hy kg iBjunyjiq

i=1j=1 i=0 j=0 i=0 j=0
(26)
under the following restrictions between the initial conditions, ..nal con-
ditions and input sequences :

Wi Wia XAnyq+1 N Z
' = B 27
{ War Wa ] { X iY0,q-1 Zy NtoN 27)

15
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where

H_q H_q_1 H—2q+1
Wi = H—:q+1 I{:_q H_:2q+2
H_, H_, H_,
H nig1 H_nyg—2 H_y
H_ H_ _ H_
Wiy = fV+q N:+q 1 fV+1
H7N+2q72 H7N+2q73 H7N+q71
HN—2q+1 HN—Qq HN—3q+2
Wy — ELV?2q+2 ELV:2q+1 ELV:3q+3
Hqu Hqufl te HN72q+1
Hy H_ H_ ;4
H H H_
Way = } :0 ?+2
qul Hq72 HO
A, Ag A Ay 0
0 A A A
XA _ l q .2 : X, — .1 .0
0 A, A1 Ay
YN yq—l
YN-1 . Yg—2 |
YN—g+1,N = y Yo,q-1 = : y Uo,N =
YN—q+1 Yo

16
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UN-1

Uo

(28)



By B B, 0 - 0
By 0 B.o .l . B.q_1 B, --- 0
0 0 --- By B --- B,
H—q H—q—l e H—N HN—2q+1 HN—Qq e H—q+1
H—q+1 H—q o Honp . HN—2q+2 HN—2q+1 T H—q+2
Zy = : : ) : 142 = : : ) :
H_, H, - H—N+q—1 HN—q Hqufl T Hy

We call the solution (25) the symmetric solution of (1) and the equations
(27) boundary mapping equations of (1).
Proof. Rewritting (1) in the form

A, - A 0 - 0 Yn
. _ ] ) Yn-1 |
0 A, Ay A :
N ~~ 7/ yO
AN S—
Yo,N
B, By 0 0 UN
UnN-1
e . . i . <
O Bq qul BO .
S P / uo
BN N —
uo, N
- A, 0 .
XAYN—q+1,N oo Yo
0 = | -4, . —A | Bn { Zowq] (29)
X z1Y0,4-1 . . . '
| 0 - A J

where yon_g = [YN_g - ¥e ", Premultiply both sides of (29) by A}
we obtain from the ..rst ¢ and the last ¢ equations the relations (27), while
from the middle N — 2q equations, after the use of Lemma 3.7 we obtain the
formula (25).
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A necessary and su¢cient condition such that the ARMA-representation
(1) has a solution is that the initial, ..nal conditions and input sequences
satis..es the relation (27). Therefore we de..ne :

De...nition 3.9 We de..ne as

ﬁm = {yo,qfl, YN—q+1,N *
Wi Wi XAnyqul,N _ Zy Bnu N}
War Way X iY0,q-1 Ly 0

the symmetric boundary condition space of (1) under nonzero inputs. &

The boundary mapping equation (27) represents the restrictions that the
system places on the boundary variables v, ,—1, Yyn—q+1,5 In Order the system
to be solvable. Addition restrictions on the variables can be applied to the
system in the form of an auxiliary equation

(30)

Wai1yn—g+1,8 + Waayog-1 = C (31)

The combined boundary equation formed from (27) and (31)

WinXa W12XA Zluo,N
WauXa WanXj; { IN=q+1,N ] = | Zowgn | & 30
Wy W, Yoa-1 C (32)
=72y =C

will subsequently de..ne a unique solution ia ZZ+C = C and Z has full
column rank, where Z* denotes the pseudoinverse of Z, i.e. Y = Z*C.

Alternative forms of the solution formula (25) are given by the following

Corollary 3.10 The symmetric solution (25) can be written in the al-
ternative forms

FORWARD - SYMMETRIC

Ay 0 - 0 Yk-1
Ay Ag o 0 Yr—2
yk:_[Hfl H_ 5 H*q] . : ., : : T
Aq—l Aq—2 to AO Yk—q
(33)

18



Ay Ag - 0 YN-1
+ [ Hv-r Hy—p—1 -+ Hy_g—gi1 | : : L : +
Aq—l Aq—2 AO YN—q+1
B, B, By O 0 (9%
0 B B 1 BO 0 UN-1
+ |: HN_k;—q HN—k—q—l e H_q j| : ! _q . ., . .
0 0 Bq Bq_1 BO Ug
or
q i—1 q—1 1 N—-k q
Yo =— 2 > HoiAjyn—jit+ D >0 HyvopiAjyn—ivit+ D 20 HN-k—g-iBjun+j—i—q
i=135=0 i=0 j=0 i=0 j=0
(34)
BACKWARD - SYMMETRIC
Aq Aq—l e Al Yg—1
0o A e Ay Yq—2
Y = [ Hyy Hypo - Hoyy ] . q o :q _
0 0 . Aq Yo
(35)
Aq Aqfl : Al Yk+q
0 A . AQ Yk+q—1
—[Hy Hy -+ Hoyu]|. .° : .
0 0 - A Yk+1
B, B,1 - By, 0 e 0 Uk
0 B B,, --- B -+ 0 Upytg—
_|_[H0 H_l H_k} q q—1 ..0 . .kJrql
0 0 Bq Bq_1 BO Ug



or equivalently

9 g qg—1 q k q
Y = Zl SH Ay — ZO > 1 H_iAjyitji+ ZO ZOH—iBjuk—i—j—i (36)
== =05 ==

Proof. Taking the solution formula (25) and using the following three
tasks

(i) Assume that £k = vg+v (N —k =vq+v)

(i) Do the following replacement

Aq Aq—l e Ay
0 A e As for s
[H—s H .y - H g4 } o . : or_s#q
0 0 LA,
Ay A Ay
0 Ao Ayos
= - [ Hferq H,s+q+1 U H*SJFQCI*l :| : : (37)
0 O - Ay
A 0 e 0
A Ap .o 0 for s
| Hv-k-sq Hn-k-sq-1 -+ Hy_k—(s+1)q11 | : L e
Aq—l Aq—2 AO
A, Ags A
0 A, o A
= - [ Hkaf(s+1)q Hkaf(erl)qfl T Hkaf(erQ)qul ] . .
0 0 A,
(38)

which is based on (11).
(ii1) Do the following replacement (using (1))
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AO Al e A(I71 yk+5q Aq 0 A 0 yk+(5+1)q

0 Ay -+ Ay Yk+sq+1 A A 0 Ykt(s+1)g+1 N
0 0 - A Yk+(s+1)g—1 A Ay - Aq Yk+(s+2)g—1
BO Bl ce Bq 0 0 Uk+sq
0O B, --- B.+ B. --- 0 Ukors
L T (39)
0O 0 -~ By By --- By Uk4(s+2)g—1
Aq Aq—l T Al YN—sq AO 0 - 0 YN—(s+1)q
0 A Ay YN—sq—1 - A A -0 YN—(s+1)g—1 N
0 0 T Aq YN—(s+1)g+1 Aq—l Aq—2 < Ag YN—(s+2)g+1
By, By - B, 0O --- 0 UN_sq
0 By --- B,y B, --- 0 UN —sq—1
T : o, -q. -.q .. : : ' (40)
0 0O -~ By By -- Bq UN —(s+2)g+1

which is based on (1) we get the solution formula (33) and (35).

In the Forward-Symmetric case we still solve within the region [0, N] but
now the solution depends on the ¢ ..nal conditions {yn, yn—1,..., Yn—q+1} and
the previous ¢ outputs {yx_1, yx_2, ..., Ys—q} @nd no longer on the ¢ ..xed initial
conditions {yo, v, ..., y,—1}. Therefore we solve forwards in the interval.

In the Backward-Symmetric case we again still solve within the region
[0, N] but now the solution depends on the ¢ initial conditions {yo, y1, ..., y4—1}
and the future g outputs {yii1, Yk+2, ---, Yk+qs and no longer on the ¢ ..xed
..nal conditions {yn, yn_1,..., yn—q+1}. Therefore we solve backwards in the
interval.

4 Illlustrative Example

Consider the following discrete time ARMA-representation :
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0?+50+6 o+1 0 i 0
20 -5 30+2 1 v =10 | u (41)
0 -1 0 y3 1
A(o)=Ap+A10+Az02 Yk B(o)=Bog

Let also the Laurent expansion of A(c)™! at s = oo :

000 00 O 0 0 1
Alo)™=[000]|o+ |00 =1 |+ 0 0 0 |o '+
00 3 01 0 -2 0 13
Hi Hyp H_ 4
1 0 —4 -5 0 14
+10 00 c?+10 00 o+
15 0 —48 —63 0 162
H_o H_3
and the Laurent expansion at s = 0 of A(o)™' :
s 03 —5 0 5 26 0~
Al =0 0 =1 |+]0 00 |o+ |0 00 ot .-
5 1 i 37 o 15 g _67
6 6 36 36 216 216
Vo Wi |41

A forward recursive representation of (41) is given according to Corollary
3.3 by

Ay 0 Yk—1
v == Hoa H—Q]{Al AoHyH]*

BO 0 0 0 Uk—2
0 By 0 O _
+[Ha Ho Ho Bl % oo || |7

0 0 0 BO Uk+1

—5Yp_1 — 6Yp_o — S5 — Aup_2 + up_
—63y;_1 — 90y o — 63y; 5 — 48up_o + 13ug_1 + Buppy
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The admissible initial condition space H;, of (41) under

I

By

is given from (13) as follows :

( yl-,ul- (/L:O,l)
Ay 0 Hy H, Ao
H‘ L Al AO H_1 H() Al

0

Al AO Hfl HO Hl

o

\

or equivalently

( yi,u; (1=0,1):
0 -4 0 0 1 0[]
5 2 1 2 3 0|/
H;, = 0 -1 0 0 0 0 ys
0 60 0 1 0]
-12 -10 0 =15 2 1 Y3
Lo o0 0 0 -10]][¢]

A backward recursive representation of (41) is given from Corollary 3.6

by :

A1 Ao

Ay O
ye=[ Va V1}[ 0 ][ykw}-i“/oBouk:

Yk+1

Ll m )y

Ao

=}

=}

1,1 5,1 1,2 1
“Yk+2 — 6Yk+1 — gYk+1 T §UK

5,1 371 25 2 17
—6Ykt2 — Ykt — G Yk T G Uk

The admissible ..nal condition space H;, of (41) under nonzero inputs is

}:

given by 21) as follows

yi,u; (1=N,N—1):

I

) Ay 0 00]1[A 0
Hiu = Al A2 0 0 Al AQ

YN
YN-1

T4y 0 0
o ][]
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S 00 O = O

Yo
Y|

By

O Ww o o oo

Uo
Uy
U2

nonzero inputs

U
U
U2

J



={yi,uw (i=N,N —1) : arbitrary}

In the same way we can use relation (25) to ..nd the symmetric solution of
(41) under the restrictions between the ..nal and initial conditions described
by (27). m

5 Conclusions

In the case of regular discrete time ARMA-representations exact solutions
where proposed in three dicerent forms : a) forward solutions, b) backward
solutions and c¢) symmetric solutions. It is easily seen that the proposed solu-
tions are extensions of the ones proposed by [8] for discrete time generalized
state space systems. the solution formula presented in this work has been
implemented via MAPLE in a recent publication [4]. Certain controllability,
reachability and observability criteria based on the proposed solutions are
being studied and will be discussed in a future publication.
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