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Abstract�The problem of determination of a minimal polyno-
mial basis of a rational vector space is the starting point of many
control analysis, synthesis and design techniques. In this paper,
we propose a new algorithm for the computation of a minimal
polynomial basis of the left kernel of a given polynomial matrix
F (s). The proposed method exploits the structure of the left null
space of generalized Wolovich or Sylvester resultants, in order to
compute ef�ciently row polynomial vectors that form a minimal
polynomial basis of the left kernel of the given polynomial
matrix. One of the advantages of the algorithm is that it can be
implemented using only orthogonal transformations of constant
matrices and the result is a minimal basis with orthonormal
coef�cients.

I. INTRODUCTION

The problem of determination of a minimal polynomial
basis of a rational vector space (see [8]) is the starting point of
many control analysis, synthesis and design techniques based
on the �polynomial matrix approach� [18], [6], [12], [17].
Given a rational transfer function matrix P (s) it is usually
required to determine left or right coprime polynomial matrix
fractional representations (factorizations) of P (s) of the form
P (s) = D�1

L (s)NL(s) = NR(s)D
�1
R (s): Moreover, in many

applications apart from the coprimeness requirement of the
above factorizations, it is often desirable to have factoriza-
tions where either the denominator matrices DL(s); DR(s) or
the compound matrices E(s) := [DL(s); NL(s)]; F (s) :=
[NR(s)

>;�DR(s)>]> have respectively minimal row or col-
umn degrees, i.e. they are row or column proper (reduced).
Classical examples of such applications are the denominator
assignment problem (see [19], [6], [7], [12], [13], [1]) and the
determination of a minimal realization (see [18] ,[17], [16])
of a MIMO rational transfer function, where a minimal in the
above sense and coprime factorization of the plant is required.
Furthermore, even the problem of row or column reduction
of a polynomial matrix itself can be solved using minimal
polynomial bases computation techniques as described in [4]
and [14].
The classical approach (see [18], [9]) to the problem of

�nding a minimal polynomial basis of a rational vector space,
starts from a given, possibly non�minimal, polynomial basis
and in the sequel applying polynomial matrix techniques (ex-
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traction of greatest common divisors and unimodular transfor-
mations for row/column reduction) one can obtain the desired
minimal basis. However, such implementations are known to
suffer of serious numerical problems and thus they are not
recommended for real�life applications. A numerically reliable
alternative to the classical approach has been presented in [3].
The method presented in [3] utilizes the �pencil approach�
by applying generalized Schur decomposition on the block
companion form of the polynomial matrix, which in turn
allows the computation of a minimal polynomial basis of the
original matrix. A second alternative appears in [15], where
the computation of the minimal basis is accomplished via
the Padé approximants of the polynomial matrices involved.
Our approach to the problem is comparable to the technique
presented in [10] and [11], where the computation of minimal
polynomial bases of matrix pencils is considered and to the
one in [2] where the structure of Sylvester resultant matrices
is being utilized.
The problem of computation of a minimal basis can be

stated as follows. Given a full column rank (over R (s))
polynomial matrix F (s) 2 R[s](p+m)�m determine a left
unimodular, row proper matrix E(s) 2 R[s]p�(p+m) such that

E(s)F (s) = 0

Then E(s) is a minimal polynomial basis of the left kernel
of F (s): Our approach to the problem exploits the structure
of the generalized Sylvester or Wolovich resultant (see [5],
[1]) of the polynomial matrix F (s). Notice that the methods
presented in [3], [15], [10], [11] and [2] deal with the dual
problem, i.e. determination of a minimal basis of the right
kernel of E(s):

II. MATHEMATICAL BACKGROUND
In the following R; C; R (s) ; R [s] ; Rpr (s) ; Rpo (s) are

respectively the �elds of real numbers, complex numbers, real
rational functions, the rings of polynomials, proper rational
and strictly proper rational functions all with coef�cients in R
and indeterminate s: For a set F; Fp�m denotes the set of p�m
matrices with entries in F: N+ is the set of positive integers.
The symbols rankF(:); kerF(:) and ImF(:) denote respectively
the rank, right kernel (null space) and image (column span) of
the matrix in brackets over the �eld F. Furthermore in certain
cases we may use the symbols kerLF (:) and Im

L
F (:) to denote



the left kernel and row span of the corresponding matrix over
F. In case F is omitted in one of these symbols R is implied.
If m 2 N+ then m denotes the set f1; 2; :::;mg :
A polynomial matrix T (s) 2 R[s]p�m will be called

left (resp. right) unimodular iff rankT (s0) = p (resp.
rankT (s0) = m) for every s0 2 C, or equivalently iff T (s)
has no zeros in C. When T (s) is a square polynomial matrix
then T (s) will be called unimodular iff rankT (s0) = p = m
for every s0 2 C.
A polynomial matrix X(s) 2 R[s]p�m(p � m) is called

column proper or column reduced iff its highest column degree
coef�cient matrix, denoted by Xhc; which is formed by the
coef�cients of the highest powers of s in each column ofX(s);
has full column rank. The column degrees of X(s) are usually
denoted by degciX(s); i 2m. Respectively Y (s) 2 R[s]p�m
(p � m) is called row proper or row reduced iff Y >(s) is
column proper and the row degrees of Y (s) are denoted by
degri Y (s); i 2 p:
Let F (s) 2 R[s](p+m)�m with rankR(s)F (s) = m and

E(s) 2 R[s]p�(p+m) with rankR(s)E(s) = p be polynomial
matrices such that

E(s)F (s) = 0 (1)

When (1) is satis�ed and E(s) is row proper and left
unimodular, E(s) is a minimal polynomial basis [8] of the
(rational vector space spanning the) left kernel of F (s) and
the row degrees degriE(s) =: �i; i 2 p of E(s) are the
invariant minimal row indices of the left kernel of F (s) or
simply the left minimal indices of F (s): Similarly when (1) is
satis�ed with F (s) column proper and right unimodular, F (s)
is a minimal polynomial basis of the (rational vector space
spanning the) right kernel of E(s) and the column degrees
degci F (s) =: ki; i 2 m of F (s) are the invariant minimal
column indices of the right kernel of E(s) or simply the right
minimal indices of E(s):
Given a polynomial matrix F (s) 2 R[s](p+m)�m and

k; a; b 2 N+ we introduce the matrices

Sa;b(s) := [Ia; sIa;:::; s
b�1Ia]

> 2 R [s]ba�a (2)

Xk(s) := Sp+m;k(s)F (s) 2 R[s](p+m)k�m (3)

Equation (3) is essentially the basis for the construction of
generalized resultants. Let F (s) = F0+sF1+ :::+sqFq; Fi 2
R(p+m)�m and write

Xk(s) = RkSm;q+k(s) (4)

where Rk

Rk :=

266664
F0 F1 : : : Fq 0 : : : 0

0 F0 F1 : : : Fq
. . .

...
...

. . . . . . : : :
. . . 0

0 : : : 0 F0 F1 : : : Fq

377775 (5)

The matrix Rk is known [5] as the Generalized Sylvester
Resultant of F (s):

Let ki = degci F (s); i 2m be the column degrees of F (s) :
Similarly to [18] (page 242) Xk(s) can be written as

Xk (s) =Mekblock diag
i2m

fS1;ki+k(s)g (6)

where Mek 2 R
(m+p)k�(mk+

mP
i=1

ki)
. The matrix Mek is

de�ned [1] as the Generalized Wolovich Resultant of F (s):
Write F (s) = [f1(s); f2(s); :::; fm(s)] where fi(s) = fi0+

sfi1+ :::+ s
kifiki 2 R [s]

(m+p)�1, i 2m are the columns of
F (s): Then it is easy to see that

Mek = [R
1
k; R

2
k; :::; R

m
k ] (7)

where

Rik =

26664
fi0 fi1 : : : fiki 0 : : : 0
0 fi0 fi1 : : : fiki : : : 0
...

...
. . . . . . : : :

. . .
...

0 0 : : : fi0 fi1 : : : fiki

37775 ; i 2m
is the generalized Sylvester resultant of the column fi(s), i 2
m of F (s): It is easy to see that the two types of generalized
resultants are related through

Rk = [Mek; 0(m+p)k;b]Pk (8)

where Pk 2 Rm(q+k)�m(q+k) is a column permutation matrix.
The fact that Rk contains at least b = mq �

mP
i=1

ki; where

q = max
i2m

fkig; zero columns has been observed in [19]: The
following result will be very useful in the sequel
Theorem 1: Let E(s) 2 R[s]p�(p+m) be a minimal poly-

nomial basis for the left kernel of F (s) as in 1 and let
�i = degriE(s); i 2 p be the invariant minimal row indices
of the left kernel of F (s): Then

rankRk = rankMek = (p+m)k �
X
i:�i�k

(k � �i) (9)

Proof: The rank formula (9) for the generalized Sylvester
resultant �rst appeared in [5], while the corresponding result
for the generalized Wolovich resultant has been established in
[1]. Furthermore, the fact that rankRk = rankMek becomes
obvious in view of equation (8).

III. COMPUTATION OF MINIMAL POLYNOMIAL BASES
It is evident from the last result of the above section that

the orders of the left minimal indices of a polynomial matrix
F (s) are closely related to the structure of the generalized
Sylvester or Wolovich resultants. Furthermore, the following
result shows the connection between the coef�cients of a
minimal polynomial basis of the left kernel of F (s) and a
basis of the left kernel of either Rk or Mek.
Theorem 2: Let E(s) be a minimal polynomial basis for

the left kernel of F (s) as in (1). Let �i = degriE(s); i 2
p be the invariant minimal row indices of the left kernel of
F (s); and denote by ak the number of rows of E(s) with
�i = degriE(s) = k. Then

kerLRk = ker
LMek = Im

LLk (10)



where Lk 2 Rvk�k(p+m) , is de�ned by

block diag
i:�i<k

fS1;k��i(s)gEk(s) = LkSp+m;k(s) (11)

and Ek(s) 2 R�k�(p+m) is a polynomial matrix that consists
of all �k =

Pk�1
i=0 ai rows of E(s) with row degrees

satisfying �i = degriE(s) < k; and vk =
P

i:�i<k

(k � �i) =

dimkerLMek = dimker
LRk:

Proof: Since Ek(s) consists of rows of E(s) satisfying
�i = degriE(s) < k; in view of (1) it is easy to see that

Ek(s)F (s) = 0 (12)

for every s 2 C. Postmultiplying (11) by F (s) and using (12)
gives

LkXk(s) = 0

with Xk(s) de�ned in (3). Now using respectively (4) and (6),
we get

LkRkSm;q+k(s) = 0 and LkMekblock diag
i2m

fS1;ki+k(s)g = 0

for every s 2 C. Thus

LkRk = 0 and LkMek = 0

which proves that ImL Lk � kerLRk and ImL Lk �
kerLMek: Furthermore it is easy to see that Lk has full
row rank since the existence of a (constant) row vector
�w> 2 R1�vk s.t. �w>Lk = 0, would imply (via eq. 11)
existence of a polynomial vector w(s)> 2 R [s]1��k satisfying
w(s)>Ek(s) = 0; which contradicts the fact that E(s) consists
of linearly independent polynomial row vectors. Thus

dim Im LLk =
X
i:�i<k

(k��i) = dimkerLMek = dimker
LRk

which completes the proof.
Our aim is to propose a method for the determination of a

minimal polynomial basis for the left kernel of F (s): As it
will be shown in the sequel this can be done via numerical
computations on successive generalized Sylvester or Wolovich
resultants of the polynomial matrix F (s): The key idea is that
if we already know a part of the minimal polynomial basis
E(s) of the left kernel of F (s), corresponding to rows with
row degrees less than k; then we can easily determine linearly
independent polynomial row vectors with degree exactly equal
to k; that belong to the left kernel of F (s):
Recall that Ek(s) 2 R [s]�k�(p+m) is the matrix de�ned in

theorem 2, i.e. it is a part of the minimal polynomial basis
E(s) of the left kernel of F (s) that contains only those rows
of E(s) with �i = degriE(s) < k. For k = 1; 2; 3; :::. we
de�ne the sequence of rational vector spaces

Fk = Im L
R(s)Ek(s) (13)

It is easy to see that

F1 � F2 � ::: � F�+1 = kerLR(s) F (s) (14)

where � = max
i2p

f�ig; while obviously

dimR(s) Fk = �k (15)

Theorem 3: Let Ek(s) be a minimal polynomial basis of
Fk. De�ne the

P
i:�i<k

(k � �i + 1) � (p +m)(k + 1) matrix
�Lk+1 from the relation

block diag
i2�k

fS1;k��i+1(s)gEk(s) = �Lk+1Sp+m;k+1(s) (16)

and let �Nk+1 2 Rak�(p+m)(k+1) be such that the ak +P
i:�i<k

(k��i+1)�(p+m)(k+1) compound matrix ~Lk+1 :=

[�L>k+1;
�N>
k+1]

> satis�es

rank~Lk+1 =
X

i:�i<k+1

(k � �i + 1) and ~Lk+1Me(k+1) = 0

(17)
i.e. such that ~Lk+1 is a basis of kerLMe(k+1): Then the rows
of the polynomial matrix

~Ek+1(s) :=

�
Ek(s)
Nk+1(s)

�
form a minimal polynomial basis of Fk+1 where Nk+1 (s) :=
�Nk+1Sp+m;k+1(s) 2 R [s]ak�(p+m) :

Proof: Postmultiplying (16) by F (s) and taking into
account (6) and the fact that Ek(s)F (s) = 0 for every s 2 C,
it is easily seen that

�Lk+1Me(k+1) = 0 (18)

while the rows of �Lk+1 are linearly independent. We seek to
�nd linearly independent row vectors that together with the
rows of �Lk+1 form a basis of kerLMe(k+1): According to
theorem 1 dimkerLMe(k+1) =

P
i:�i<k+1

(k � �i + 1) which

compared to the number of rows of �Lk+1 shows that we need
another ak linearly independent vectors to form a complete
basis of kerLMe(k+1): Assume we determine a ak � (p +
m)(k + 1) full row rank matrix �Nk+1 such that

�Nk+1Me(k+1) = 0 (19)

with rows linearly independent to those of �Lk+1; i.e. such that

rank~Lk+1 =
X

i:�i<k+1

(k � �i + 1) (20)

Obviously the rows of the compound matrix in the above
equation form a basis for the left kernel of Me(k+1): It is easy
to verify that the rows of the polynomial matrix Nk+1(s) will
satisfy

Nk+1(s)F (s) = 0

Furthermore the polynomial rows of Nk+1(s) will have de-
grees exactly k; since if there exists a row of Nk+1(s) with
degriNk+1(s) < k, the corresponding row of �Nk+1 would be
a linear combination of the rows of �Lk+1; which contradicts
(20).



It is easy to see that there exists a row permutation matrix
P such that

P �Lk+1 =

�
Lk 0
Xk Ehrk

�
(21)

where Lk 2 Rvk�k(p+m) is a basis of kerLMek as de�ned
in (11), Xk is a constant matrix, and Ehrk is the highest row
coef�cient matrix of Ek(s): Accordingly partition �Nk+1 as
follows

�Nk+1 = [Yk; N
hr
k+1]

where Yk 2 Rak�(p+m)k and Nhr
k+1 2 Rak�(p+m) is the

highest row coef�cient matrix of Nk+1(s): We shall prove
that ~Ek+1(s) is row proper or equivalently that the highest
row degree coef�cient matrix of ~Ek+1(s) has full row rank.
Obviously

~Ehrk+1 =

�
Ehrk
Nhr
k+1

�
Assume that ~Ek+1(s) is not row proper. Then there exists a
row vector [a>; b>] such that

[a>; b>]

�
Ehrk
Nhr
k+1

�
= 0 (22)

Combining equations (18), (19) and (21) we obtain24 Lk 0
Xk Ehrk
Yk Nhr

k+1

35Me(k+1) = 0

while premultuplying the above equation by [0; a>; b>]; with
a>; b> chosen as in (22) we get

[a>; b>]

�
Xk
Yk

�
Mek = 0

Now since Lk is a basis of the left kernel of Mek there exists
a row vector c> such that

[a>; b>]

�
Xk
Yk

�
= c>Lk

It is easy to verify that

[�c>; a>; b>]
�
P 0
0 Iak

� �
�Lk+1
�Nk+1

�
= 0

which contradicts (20). Thus ~Ek+1(s) is row proper and thus
has full row rank over R (s). Hence the rows of ~Ek+1(s)
form a basis of the rational vector space Fk+1: Furthermore
~Ek+1(s); as row proper, has no zeros at s =1 [17] (Corollary
3.100, page 144): It remains to show that ~Ek+1(s) has no
�nite zeros. Consider the rational vector space Fk+1 and its
minimal polynomial basis formed by the rows of Ek+1(s).
The row orders �i = degriEk+1(s) are the minimal invariant
indices of Fk+1 and denote by ordFk+1 the (Forney invariant)
minimal order of Fk+1, which in our case is

ordFk+1 =
X

i:�i<k+1

�i

The rows of ~Ek+1(s) span also the rational vector space
Fk+1: It is known ([17], pp. 137) that if Zf ~Ek+1(s)g is

the total number of (�nite and in�nite) zeros, �M
n
~Ek+1(s)

o
is the McMillan degree of ~Ek+1(s); and ordFk+1 is the
(Forney invariant [8]) minimal order of the rational vector
space spanned by the rows of ~Ek+1(s) then

�M

n
~Ek+1(s)

o
= Zf ~Ek+1(s)g+ ordFk+1

but ~Ek+1(s) is row proper and thus its McMillan degree is
equal to the sum of its row indices, which by construction coin-
cides with

P
i:�i<k+1

�i = ordFk+1: Thus Zf ~Ek+1(s)g = 0
which establishes the fact that ~Ek+1(s) has no �nite zeros.
Thus ~Ek+1(s) is a row proper left unimodular polynomial
basis of Fk+1; i.e. a minimal polynomial basis of Fk+1:
The above theorem essentially allows us to determine suc-

cessively a minimal polynomial basis of kerLR(s) F (s): Starting
with k = 0 one can determine a minimal polynomial basis
of F1; i.e. the part of the minimal polynomial basis of
kerLR(s) F (s) with row indices �i = 0: Using this part of the
polynomial basis and applying again the procedure of theorem
3 for k = 1; we determine a minimal polynomial basis of F2:
The entire procedure can be repeated until we have a minimal
polynomial basis consisting of p row vectors.
In order to obtain numerically stable results one can use

singular value decomposition to obtain orthonormal bases
of the kernels of constant matrices involved. Furthermore,
the rows of �Nk+1 can be chosen not only to be linearly
independent to those of �Lk+1;but orthogonal to each one of
them. This can be done by computing an orthonormal basis
of the left kernel of [Me(k+1); �L

>
k+1]: The coef�cients of a

minimal polynomial basis computed this way will form a set
of orthonormal vectors, i.e. Ek�1E>k�1 = Ip:
The entire procedure can be summarized in the following

algorithm:
� Step 1. Compute an orthonormal basis �N1 of kerLMe1,
and set E1 = �N1

� Step 2. Set k = 2
� Step 3. Using (16) compute �Lk for Ek�1(s) =
Ek�1Sp+m;k

� Step 4. Determine an orthonormal basis �Nk of

kerL[Mek; �L
>
k ] and set Ek =

�
Ek�1 j 0
�Nk

�
� Step 5. Set k = k + 1
� Step 6. If f# of rows Ek�1g < p go to Step 3
� Step 7. The minimal polynomial basis is given by
Ek�1Sp+m;k�1 (s)

Notice that the above procedure can be applied even if the
matrix F (s) has not full column rank over R (s). Assuming
that rankR(s)F (s) = r < m; we can modify step 6 so that the
loop stops if f# of rows Ek�1g = p+m�r, since obviously
p + m � r is the dimension of the left kernel of F (s). In
case r is unknown, we can still use the proposed algorithm
by leaving the loop running until k reaches mq; since mq is
known to be the upper bound for the maximal left minimal
index �; but with a signi�cant overhead in computational cost.
Obviously the proposed algorithm can be easily modi�ed

to compute right minimal polynomial bases, by simply trans-



posing the polynomial matrix whose right null space is to be
determined. Finally, notice that throughout the above analysis
we have used the generalized Wolovich resultant because in
general it has less columns than the corresponding generalized
Sylvester resultant (see (8)). However, the left null space
structure of both resultants is identical and the proposed
algorithm can be implemented using either.

IV. EXAMPLE
The computations bellow have been carried out on an PC,

with relative machine precision EPS = 2�52 ' 2:22045 �
10�16: Consider the example 5.1 in [3]. Given then transfer
function P (s) = NR(s)D�1

R (s); where

NR(s) =

266664
s2 0 0 0
0 0 0 0
0 0 0 0
0 0 s 0
0 0 0 s

377775

DR(s) =

2664
1� s 0 0 0
0 1� s 0 0
0 �s 1� s 0
0 0 0 1� s

3775
and construct the compound matrix F (s) =
[N>

R (s);�D>
R(s)]

>: The minimal basis of the left kernel of
F (s) is then given by our algorithm

E>(s) =

26666666666664

0 0 0 a (s� 1) 0
1 0 0 0 0
0 �1 0 0 0
0 0 0 0 �b+ cs� bs2
0 0 a (s� 1) 0 0
0 0 0 �as2 0
0 0 0 0 �bs2
0 0 0 0 b

�
�s+ s2

�
0 0 �as 0 0

37777777777775
where a ' 0:57735; b ' 0:333333 and c ' 0:666667: The left
coprime fractional representation of P (s) = D�1

L (s)NL(s)
can be obtained by appropriately partitioning E(s). Notice
that � = 2 which is equal to q = 2:

V. CONCLUSIONS
In this note we have proposed a resultant based method for

the computation of minimal polynomial bases of a polynomial
matrix. The algorithm utilizes the left null space structure of
successive generalized Wolovich or Sylvester resultants of a
polynomial matrix to obtain the coef�cients of the minimal
polynomial basis of a the left kernel of the given polynomial
matrix. The entire computation can be accomplished using
only orthogonal decompositions and the coef�cients of the re-
sulting minimal polynomial basis have the appealing property
of being orthonormal.
Further research on the subject could address more speci�c

problems like the computation of row or column reduced
polynomial matrices using an approach similar to [4] (and the
improved version of [14]) or the determination of rank, left

minimal indices and greatest common divisors of polynomial
matrices.
A test version of the algorithm has been implemented in

MathematicaTM 4.2 and is available upon request to anyone
interested.
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