
Infinite elementary divisor structure-preserving transforma-
tions for polynomial matrices

N. P. Karampetakis and S. Vologiannidis

Aristotle University of Thessaloniki, Department of Mathematics,
Thessaloniki 54006, GREECE, karampet@auth.gr

Abstract. The main purpose of this work is to propose new notions of equivalence between
polynomial matrices, that preserves both the finite and infinite elementary divisor structure.
The approach we use is twofold : a) the "homogeneous polynomial matrix approach" where
in place of the polynomial matrices, we study their homogeneous polynomial matrix forms
and use 2-D equivalence transformations in order to preserve its elementary divisor structure,
and b) the "polynomial matrix approach" where certain conditions between the 1-D polyno-
mial matrices and their transforming matrices are proposed.

1 Introduction

Consider a linear homogeneous matrix difference
equation of the form

A(σ)β(k) = 0, k ∈ [0, N ] (1)

A(σ) = Aqσ
q + Aq−1σ

q−1 + . . . + A0 ∈ R[s]r×r

(2)

whereσ denotes the forward shift operator. It is known
from [1] that (1) exhibits forward behavior due to the
finite elementary divisors ofA(σ) and backward be-
havior due to the infinite elementary divisors ofA(σ)
(and not due to its infinite zeros, as in the continuous
time case). Actually, ifA(s) is nonsquare or square
with zero determinant, then additionally, the right min-
imal indices play a crucial role both in the forward
and backward behavior of the AR-representation [2].
Therefore, it seems quite natural to search for trans-
formations that preserve both the finite and infinite el-
ementary divisor structure of polynomial matrices. [3]
proposed the extended unimodular equivalence trans-
formation (e.u.e.) which has the nice property of pre-
serving only the finite elementary divisors. However,
e.u.e. preserves the i.e.d., only if additional conditions
are added.

In the present work we use two different ways to
approach and solve this problem of polynomial ma-
trix equivalence. Specifically, in the third section we
notice that the finite elementary divisor structure of
the homogeneous polynomial matrix formAqσ

q +
Aq−1σ

q−1w + . . . + A0w
q corresponding to (2) gives

us complete information for both finite and infinite el-
ementary divisor structure of (2). Based on this line
of thought, we reduce the problem of equivalence be-
tween 1-D polynomial matrices to a transformation be-
tween 2-D polynomial matrices. A more direct and
transparent approach is given in the fourth section,
where we propose additional conditions to e.u.e. .
It is shown, that both transformations provide nec-
essary conditions in order for two polynomial matri-
ces to possess the same elementary divisor structure.
However, in the special set of square and nonsingular
polynomial matrices: a) the providing conditions are
necessary and sufficient, and b) the proposed transfor-
mations are equivalent transformations and define the
same equivalence class.

2 Discrete time autoregressive representations
and elementary divisor structure

In what followsR,C denote respectively the fields of
real and complex numbers andZ,Z+ denote respec-
tively the integers and non negative integers. ByR[s]
andR[s]p×m we denote the sets of polynomials and
p ×m polynomial matrices respectively with real co-
efficients and indeterminates ∈ C. Consider a poly-
nomial matrix

A(s) = Aqs
q + Aq−1s

q−1 + .. + A0 ∈ R[s]p×m

(3)

Aj ∈ Rp×m, j = 0, 1, ..., q ≥ 1, Aq 6= 0



Definition 1 Let A(s) ∈ R[s]p×m with
rankR(s)A(s) = r ≤ min (p,m) . The valuesλi ∈ C
that satisfy the conditionrankCA(λi) < r are called
finite zeros ofA(s). Assume thatA (s) has l distinct
zerosλ1, λ2, . . . , λl ∈ C, and let

Sλi

A(s)(s) =
[

Q 0r,m−r

0p−r,r 0p−r,m−r

]

Q = diag{(s− λi)mi1 , ..., (s− λi)mir}

be the local Smith formSλi

A(s)(s) of A(s) at s =
λi, i = 1, 2, ..., l wheremij ∈ Z+ and 0 ≤ mi1 ≤
mi2 ≤ ... ≤ mir. The terms(s−λi)mij are called the
finite elementary divisors (f.e.d.) ofA(s) at s = λi.

Define also asn :=
∑l

i=1

∑r
j=1 mij .

Definition 2 If A0 6= 0, the dual matrixÃ(s) of A(s)
is defined as̃A(s) := A0s

q+A1s
q−1+. . .+Aq. Since

rankÃ(0) = rankAq the dual matrixÃ(s) of A(s)
has zeros ats = 0 iff rankAq < r. Let rankAq < r
and let

S0
eA(s)

(s) =
[

diag{sµ1 , ..., sµr} 0r,m−r

0p−r,r 0p−r,m−r

]
(4)

be the local Smith form of̃A(s) at s = 0 whereµj ∈
Z+ and 0 ≤ µ1 ≤ µ2 ≤ ... ≤ µr. The infinite elemen-
tary divisors (i.e.d.) ofA(s) are defined as the finite
elementary divisorssµj of its dualÃ(s) at s = 0. De-
fine also asµ =

∑r
i=1 µi.

An interesting consequence of the above definition
is that in order to prove that the polynomial matrix
(3) has no infinite elementary divisors it is enough to
prove thatrankAq = r. It is easily seen also that
the finite elementary divisors ofA(s) describe the fi-
nite zero structure of the matrix polynomial. In con-
trast, the infinite elementary divisors give a complete
description of the total structure at infinity (pole and
zero structure) and not simply that associated with the
zeros [4],[5].

The structured indices of a polynomial matrix,
(finite-infinite elementary divisors and right-left min-
imal indices) are connected with the rank and the de-
gree of the matrix, as follows.

Proposition 1 [6],[1]
(a) If A(s) = A0+A1s+· · ·+Aqs

q ∈ R[s]r×r and
det |A(s)| 6= 0, then the total number of elementary
divisors (finite and infinite ones and multiplicities ac-
counted for) is equal to the productrq i.e. n+µ = rq.

(b) If A(s) = A0 +A1s+ · · ·+Aqs
q is nonsquare

or square with determinant equal to zero then the total
number of elementary divisors plus the left and right
minimal indices ofA(s) (order accounted for) is equal
to rq where nowr denotes the rank of the polynomial
matrixA(s).

Example 1 Consider the polynomial matrix

A(s) =
[

1 s2

0 s + 1

]
=

[
1 0
0 1

]

︸ ︷︷ ︸
A0

+

+
[

0 0
0 1

]

︸ ︷︷ ︸
A1

s +
[

0 1
0 0

]

︸ ︷︷ ︸
A2

s2

and its dual

Ã(s) =
[

s2 1
0 s + s2

]
= A2 + A1s + A0s

2

Then

SC
A(s)(s) =

[
1 0
0 s + 1

]
;S0

Ã(s)
(s) =

[
1 0
0 s3

]

ThereforeA(s) has one finite elementary divisor(s +
1) and one infinite elementary divisors3 i.e. n + µ =
1 + 3 = 2× 2 = r × q.

The elementary divisor structure of a polynomial
matrix plays a crucial role for the study of the be-
haviour of discrete time AR-Representations over a
closed time interval. Consider for example the q-th
order discrete time AutoRegressive representation :

Aqξk+q + Aq−1ξk+q−1 + · · ·+ A0ξk = 0 (5)

If σ denotes the forward shift operatorσiξk =
ξk+i then (5) can be written as

A (σ) ξk = 0, k = 0, 1, ..., N − q (6)

whereA (σ) as in (3) andξk ∈ Rr, k = 0, 1, ..., N
is a vector sequence. The solution space or behavior
BN

A(σ) of the AR-representation (6) over the finite time
interval[0, N ] is defined as

BN
A(σ) :=

{
(ξk)k=0,1,..,N ⊆ Rr|

ξk satisfies (6) fork ∈ [0, N ]

}
⊆ (Rr)N+1

(7)
and we have

Theorem 2 [7],[8]
(a) If A(s) ∈ R[s]r×r, det |A(s)| 6= 0 then the

behavior of (6) over the finite time intervalk =
0, 1, ..., N ≥ q is given by

dim BN
A(σ) = rq = n + µ

(b) If A(s) is nonsquare or square with zero determi-
nant thenBN

A(σ) is separated into an equivalence class

space i.e.B̂N
A(σ), where each equivalence class cor-

responds to the family of solutions that corresponds
to certain boundary conditions, and the dimension of
B̂N

A(σ) is n + µ + 2ε whereε denotes the total number
of right minimal indices (since the left minimal indices
play no role in the construction of the right solution
space).



It is easily seen from [7],[8], and [9] that the solu-
tion spaceBN

A(σ) is the maximal forward decomposi-
tion of (5). Actually, it consists of two subspaces, the
one corresponding to the finite elementary divisors of
A (σ), which gives rise to solutions moving in the for-
ward direction of time and the other corresponding to
the infinite elementary divisors ofA (σ) , which gives
rise to solutions moving in the backward direction of
time.

Example 2 Consider the AR-Representation
[

1 σ2

0 σ + 1

]

︸ ︷︷ ︸
A(σ)

[
ξ1

k

ξ2
k

]

︸ ︷︷ ︸
ξk

= 02×1

Then

SC
A(s)(s) =

[
1 0
0 s + 1

]
; S0

Ã(s)
(s) =

[
1 0
0 s3

]

BN
A(σ) =

〈

(
1
−1

)
(−1)k

︸ ︷︷ ︸
due toSC

A(s)(s)

,

(
δN−k

0

)
,

(
δN−k+1

0

)
,

(
δN−k+2

−δN−k

)

︸ ︷︷ ︸
due toS0

Ã(s)
(s)

〉

anddim BN
A(σ) = rq = 2× 2 = 1 + 3 = n + µ.

Example 3 Consider the polynomial matrix descrip-
tion

(
σ2

)
ξk = −uk

yk = (σ + 1) ξk

In order to find the state-input pair which gives
rise to zero output (output zeroing problem) we have
to solve the following system of difference equations

[
σ2 1

σ + 1 0

]

︸ ︷︷ ︸
P (σ)

[
ξk

uk

]

︸ ︷︷ ︸
xk

= 02×1

It is easily seen that the above discrete time AR-
Representation is the one we have already studied in
the previous example and therefore the state-input pair
which gives rise to zero output is given by a simple
transformation of the spaceBN

A(σ) defined in the pre-
vious example i.e.

(
ξk

uk

)
=




−l1 (−1)k − l4δN−k

l1 (−1)k + l2δN−k+
+l3δN−k+1 + l4δN−k+2




Since the elementary divisor structure of a polyno-
mial matrix plays a crucial role in the study of discrete
time AR-representations and/or polynomial matrix de-
scriptions over a closed time interval, we are interested
in finding transformations that leave invariant the ele-
mentary divisor structure of polynomial matrices.

3 The homogeneous polynomial matrix approach

We present in this section two different approaches in
order to study the infinite elementary divisor structure
of a polynomial matrix. The first approach is to ap-
ply a suitably chosen conformal mapping to bring the
infinity point to some finite point, while the second
approach is to use homogeneous polynomials to study
the infinity point.

Let nowP (m, l) be the class of(r + m)× (r + l)
polynomial matrices wherel andm are fixed integers
andr ranges over all integers which are greater than
max (−m,−l).

Definition 3 [3] A1(s), A2(s) ∈ P (m, l) are said to
be extended unimodular equivalent(e.u.e.) if there
exist polynomial matricesM(s), N(s) such that

[
M(s) A2(s)

] [
A1(s)
−N(s)

]
= 0 (8)

where the compound matrices

[
M(s) A2(s)

]
;

[
A1(s)
−N(s)

]
(9)

have full rank∀s ∈ C.

E.u.e. relates matrices of different dimensions and
preserves the f.e.d. of the polynomial matrices in-
volved. In the case that we are interested to preserve
only the elementary divisors at a specific points0 then
we introduce {s0}-equivalence transformation.

Definition 4 [10] A1(s), A2(s) ∈ P (m, l)
are said to be {s0}-equivalent if there
exist rational matricesM(s), N(s), having no poles
at s = s0, such that (8) is satisfied and where the
compound matrices in (9) have full rank ats = s0.

{ s0}-equivalence preserves only the f.e.d. of
A1(s), A2(s) ∈ P (m, l) of the form(s− s0)

i
, i > 0.

Based on the above two polynomial matrix trans-
formations we can easily define the following polyno-
mial matrix transformation :

Definition 5 A1(s), A2(s) ∈ P (m, l) are said to be
strongly equivalentif there exists :

(i) polynomial matricesM1(s), N1(s), such that
(8) is satisfied and where the compound matrices in
(9) have full rank∀s ∈ C.

(ii) rational matricesM2(s), N2(s), having no
poles ats = 0, such that (8) between the dual polyno-
mial matricesÃ1(s), Ã2(s) is satisfied and where the
respective compound matrices in (9) have full rank at
s = 0.



Some nice properties of the above transformation
are given by the following Theorem.

Theorem 3 (a) Strong equivalence is an equivalence
relation onP (m, l).

(b) A1(s), A2(s) ∈ P (m, l) are strongly equiva-
lent iff SC

A1(s)
(s) is a trivial expansion ofSC

A2(s)
(s)

and S0
Ã1(s)

(s) is a trivial expansion ofS0
Ã2(s)

(s) i.e.

s.e. leaves invariant the finite and infinite elementary
divisors.

Proof. (a) E.u.e. and{s0}−equivalence are equiva-
lent relations onP (m, l) and thus strong equivalence
is an equivalence relation, since it consists of the above
two equivalence relations.

(b) Strong equivalence is consisted of two transfor-
mations, the e.u.e. and the{s0}−equivalence. How-
ever, A1(s), A2(s) ∈ P (m, l) are : a) e.u.e. iff
SC

A1(s)
(s) is a trivial expansion ofSC

A2(s)
(s), and b)

{s0}−equivalent iffS0
Ã1(s)

(s) is a trivial expansion of

S0
Ã2(s)

(s).

Based on the properties of e.u.e. and {s0}-
equivalent of preserving respective the f.e.d. and the
i.e.d. at s = s0, we can easily observe that the
above transformation has the nice property of preserv-
ing both the finite and infinite elementary divisors of
Ai(s).

Example 4 Consider the polynomial matrices

A1(s) =
[

1 s2

0 s + 1

]
; A2(s) =




s 0 −1 0
0 s 0 −1
1 0 0 s
0 1 0 1




and their dual polynomial matrices

Ã1(s) =
[

s2 1
0 s + s2

]
; Ã2(s) =




1 0 −s 0
0 1 0 −s
s 0 0 1
0 s 0 s




Then we can find polynomial matricesM(s), N(s)
andM̃(s), Ñ(s) such that




0 0
0 0
1 0
0 1




︸ ︷︷ ︸
M(s)

[
1 s2

0 s + 1

]

︸ ︷︷ ︸
A1(s)

=

=




s 0 −1 0
0 s 0 −1
1 0 0 s
0 1 0 1




︸ ︷︷ ︸
A2(s)




1 0
0 1
s 0
0 s




︸ ︷︷ ︸
N(s)

is an e.u.e. and



0 0
0 0
1 0
0 1




︸ ︷︷ ︸
M̃(s)

[
s2 1
0 s + s2

]

︸ ︷︷ ︸
Ã1(s)

=

=




1 0 −s 0
0 1 0 −s
s 0 0 1
0 s 0 s




︸ ︷︷ ︸
Ã2(s)




s 0
0 s
1 0
0 1




︸ ︷︷ ︸
Ñ(s)

is a{0}−equivalence. ThereforeA1(s), A2(s) are s.e.
and thus according to Theorem 3 possess the same fi-
nite and infinite elementary divisors i.e.

SC
A(s)(s) =

[
1 0
0 s + 1

]
; SC

A2(s)
(s) =

[
I3 0
0 s + 1

]

S0
Ã1(s)

(s) =
[

1 0
0 s3

]
; S0

Ã2(s)
(s) =

[
I3 0
0 s3

]

Strong equivalence transformation has the disadvan-
tage that it consists of two separate transformations.
In order to overcome this difficulty we use the homo-
geneous variable to represent infinity.

Define as thehomogeneous formof A(s) the ma-
trix

AH(s, r) = A0s
n + A1s

n−1r + · · ·+ Anrn (10)

It is easily seen that the finite elementary divisors
of A(s) are actually the finite elementary divisors of
AH(s, 1). Similarly to the previous definition we can
easily see that the infinite elementary divisors ofA(s)
are actually the finite elementary divisors ofAH(1, r)
atr = 0. An alternative definition of the finite and infi-
nite elementary divisors in terms of the homogeneous
polynomial matrix (10) is given below.

Definition 6 [6] Let Di be the greatest common divi-
sor of thei×i minors ofAH , and defineD0 = 1. Then
Di/Di+1, and letDi/Di−1 =: ci

∏
(as− br)`i(b/a),

where the product is taken over all pairs(1, b) and
(0, 1) , and 1/0 is denoted by∞. The factors

(as− br)`i(b/a), with `i (b/a) 6= 0 are called the ele-
mentary divisors ofA(s), and the integers̀i the ele-
mentary exponents ofA(s).

It is easily seen that the pairs(0, 1) corresponds to
the i.e.d. while the remaining pairs to the f.e.d. .

Example 5 Consider the polynomial matrixA(s) de-
fined in Example 4 i.e.

A(s) =
[

1 s2

0 s + 1

]

Define also the homogeneous polynomial matrix

AH(s, r) =
[

r2 s2

0 sr + r2

]



Then

D0 = 1, D1 = 1, D2 = r3 (s + r)

and therefore the Smith form ofAH(s, r) overR[s, r]
is given by

SC
AH(s,r)(s, r) =

[
1 0
0 r3 (s + r)

]

where we have the following pairs of(a, b) : (1, 1)
with exponent1 and (0, 1) with exponent3. The first
pair corresponds to the f.e.d.(s+1)1, while the second
pair corresponds to the i.e.d.r3.

An extension of the e.u.e. into the 2-D setting is
given by two transformations, factor and zero coprime
equivalence [11]. While both of them preserve the
invariant polynomials of the equivalent matrices, the
second ones has the additionally property to preserve
the ideals of a polynomial matrix and therefore is more
restrictive. Since we are interested only in the invariant
polynomials of the homogeneous polynomial matrices
and not in their corresponding ideals we present and
use only the first of the above two transformations.

Definition 7 A1(s, r), A2(s, r) ∈ P (m, l) are said
to be factor coprime equivalent(f.c.e.) if there
exists polynomial matricesM(s, r), N(s, r) such that

[
M(s, r) A2(s, r)

] [
A1(s, r)
−N(s, r)

]
= 0 (11)

where the compound matrices

[
M(s, r) A2(s, r)

]
;

[
A1(s, r)
−N(s, r)

]
(12)

are factor coprime i.e. if all the(r + m) ×
(r + m) (resp. (r + l) × (r + l)) minors of
[

M(s, r) A2(s, r)
]

(resp.

[
A1(s, r)
−N(s, r)

]
) have

no polynomial factor.

Some nice properties of the above transformation
are given by the following Theorem.

Theorem 4 [12], [11]
1. F.c.e. is only reflexive and transitive and there-

fore is not an equivalence relation. F.c.e. is an equiva-
lence relation onP (m,m) the set of square and non-
singular polynomial matrices.

2. F.c.e. leaves invariant the invariant polynomials
of the f.c.e. polynomial matrices.

Since a) the above transformation leaves invari-
ant the invariant polynomials of the equivalent poly-
nomial matrices and b) the fact that the elementary di-
visor structure of a polynomial matrix is completely
characterized by the invariant polynomials of its ho-
mogeneous polynomial matrix, it seems quite natural
to reduce the problem of equivalence between two 1-
d polynomial matrices to the problem of equivalence
between its respective homogeneous polynomial ma-
trices.

Definition 8 A1(s), A2(s) ∈ P (m, l) are defined to
be factor equivalentif their respective homogeneous
polynomial matricesAH

1 (s, r), AH
2 (s, r) are factor

coprime equivalent.

Due to the properties of the factor coprime equiv-
alence, it is easily to prove the following.

Theorem 5 i) F.e. is only reflexive and transitive and
therefore is not an equivalence relation. F.e. is an
equivalence relation onP (m, m) the set of square and
nonsingular polynomial matrices.

ii) F.e. leaves invariant the finite and infinite ele-
mentary divisors of the equivalent polynomial matri-
ces.

Example 6 Consider the polynomial matrices
A1(s), A2(s) defined in Example 4,and their respec-
tive homogeneous polynomial matrices

AH
1 (s, r) =

[
r2 s2

0 sr + r2

]

AH
2 (s, r) =




s 0 −r 0
0 s 0 −r
r 0 0 s
0 r 0 r




Then we can find polynomial matrices
M(s, r), N(s, r) such that




0 0
0 0
1 0
0 1




︸ ︷︷ ︸
M(s,r)

[
r2 s2

0 sr + r2

]

︸ ︷︷ ︸
AH

1 (s,r)

=

=




s 0 −r 0
0 s 0 −r
r 0 0 s
0 r 0 r




︸ ︷︷ ︸
AH

2 (s,r)




r 0
0 r
s 0
0 s




︸ ︷︷ ︸
N(s,r)

where

SCh
M AH

1

i (s, r) =
[

I4 04×2

]

SC2
4 AH

2

−N

3
5

(s, r) =
[

I2

04×2

]

Therefore,A1(s), A2(s) are f.e. and thus, according
to Theorem 5 they possess the same f.e.d and i.e.d..
However, it is easily seen that the compound matrix[

M A1

]
has singularities ats = r = 0 for any

matrix M(s, r) and therefore,AH
1 (s, r), AH

2 (s, r) are
not zero coprime equivalent ([12], [11]), although
they possess the same invariant polynomials. There-
fore, it is seen that zero coprime equivalence would be
quite restrictive for our purpose. This is easily checked
out in case whereA1(s), A2(s) are of different di-
mensions. Then there is no zero coprime equivalence
transformation betweenAH

1 (s, r), AH
2 (s, r).



For 1-D systems, [13] has presented an algorithm
that reduces a general arbitrary polynomial matrix
A(s) to an equivalent matrix pencil. More specifically,
given the polynomial matrixA(s) in (3) and the matrix
pencil

sE−A =




sIm −Im 0 · · · 0
0 sIm −Im · · · 0
...

...
...

. ..
...

0 0 0 · · · −Im

A0 A1 A2 · · · Aqs + Aq−1




(13)
the following holds.

Theorem 6 The polynomial matrixA(s) defined in
(3) and the matrix pencilsE − A defined in (13) are
f.e..

Proof. Consider the transformation

[
0(q−1)m,p

Ip

]

︸ ︷︷ ︸
M(s,r)

AH(s, r) = [sE − rA]




rq−1Im

rq−2sIm

...
rsq−2Im

sq−1Im




︸ ︷︷ ︸
N(s,r)

Then, the compound matrix
[

M(s, r) sE − rA
]

has two qm × qm minors equal tos(q−1)m and
(−r)(q−1)m respectively and thus the matrices are fac-
tor coprime These minors are .

det




sIm −rIm 0 · · · 0
0 sIm −rIm · · · 0
...

...
...

. . .
...

0 0 0 · · · sIm

A0r A1r A2r · · · Aq−2r

0
0
...
0
Ip




det




−rIm 0 · · · 0
sIm −rIm · · · 0

...
...

. . .
...

0 0 · · · −rIm

A1r A2r · · · Aqs + Aq−1r

0
0
...
0

Im




and are equal tos(q−1)m and(−r)(q−1)m respectively.

Similarly the the compound matrix

[
AH(s, r)
−N(s, r)

]
has

two coprimem×m minors,s(q−1)m andr(q−1)m, and
thus is factor coprime i.e.

det
[
rq−1Im

]
= r(q−1)m ; det

[
sq−1Im

]
= s(q−1)m

Therefore, the matrices
[

M(s, r) sE − rA
]

and[
AH(s, r)
−N(s, r)

]
are factor coprime,AH(s, r) andsE−

rA are factor coprime equivalent andA(s), sE−A are
factor equivalent.

An illustrative example of the above theorem has
already been given in example 6. A direct conse-
quence of the above theorem is given by the following
lemma.

Lemma 7 A(s) and sE − A possess the same finite
and infinite elementary divisor structure.

Proof. A(s) andsE−A are f.e. from Theorem 6 and
thus according to Theorem 5 possess the same finite
and infinite elementary divisor structure.

A completely different and more transparent ap-
proach to the problem of equivalence between 1-D
polynomial matrices, without using the theory of 2-D
polynomial matrices, is given in the next section.

4 The polynomial matrix approach

Although e.u.e. preserves the finite elementary divi-
sors, it does not preserve the infinite elementary divi-
sors, as we can see in the following example.

Example 7 Consider the following e.u.e. transforma-
tion
[

1 0
0 1

]

︸ ︷︷ ︸
M(s)

[
1 s2

0 s + 1

]

︸ ︷︷ ︸
A1(s)

=
[

1 s3

0 s + 1

]

︸ ︷︷ ︸
A2(s)

[
1 s2 − s3

0 1

]

︸ ︷︷ ︸
N(s)

AlthoughA1(s), A2(s) have the same finite elemen-
tary divisors, i.e.

SC
A1(s)

(s) =
[

1 0
0 s + 1

]
= SC

A2(s)
(s)

they have different infinite elementary divisors i.e.

S0
Ã1(s)

(s) = S02
4 s2 1

0 s + s2

3
5

=
[

1 0
0 s3

]

S0
Ã2(s)

(s) = S02
4 s3 1

0 s2 + s3

3
5

=
[

1 0
0 s5

]

The above example indicates that further restric-
tions must be placed on the compound matrices (9), in
order to ensure that the associated transformation will
leave invariant both the finite and infinite elementary
divisors. A new transformation between polynomial
matrices of the same setP (m, l) is given in the fol-
lowing definition.

Definition 9 Two matricesA1(s), A2(s) ∈ P (m, l)
are said to bedivisor equivalent(d.e.) if there exist
polynomial matricesM(s), N(s) of appropriate di-
mensions, such that (8) is satisfied, where

(i) the compound matrices in (9) are left prime and
right prime matrices, respectively,

(ii) the compound matrices in (9) have no infinite
elementary divisors,

(iii) the following degree conditions are satisfied

d
[

M(s) A2(s)
] ≤ d [A2(s)] (14)

d

[
A1(s)
−N(s)

]
≤ d [A1(s)]

whered[P ] denotes the degree ofP (s) seen as a poly-
nomial with nonzero matrix coefficients.



An important property of the above transformation
is given by the following Theorem.

Theorem 8 If A1(s), A2(s) ∈ P (m, l) are divisor
equivalent then they have the same finite and infinite
elementary divisors.

Proof. According to condition (i) of ”divisor equiva-
lence”,A1(s) andA2(s) are also e.u.e. and thus have
the same finite elementary divisors.

(8) may be rewritten by settings = 1
w , as

[
M( 1

w ) A2( 1
w )

] [
A1( 1

w )
−N( 1

w )

]
= 0

and then premultiplying and postmultiplying by

w
d
h

M(s) A2(s)
i

and w
d

2
4 A1(s)
−N(s)

3
5

respec-
tively as

w
d
h

M(s) A2(s)
i [

M( 1
w ) A2( 1

w )
]× (15)

×
[

A1( 1
w )

−N( 1
w )

]
w

d

2
4 A1(s)
−N(s)

3
5

= 0 ⇐⇒

˜[
M(w) A2(w)

] ˜[
A1(w)
−N(w)

]
= 0

where ~ denotes the dual matrix. Now
since d

[
M(s) A2(s)

] ≤ d [A2(s)] and

d

[
A1(s)
−N(s)

]
≤ d [A1(s)] equation (15) may be

rewritten as
[

M ′(w) Ã2(w)
] [

Ã1(w)
−N ′(w)

]
= 0 (16)

The compound matrix
[

M(s) A2(s)
]

(respec-

tively

[
A1(s)
−N(s)

]
) has no infinite elementary divi-

sors and therefore its dual
[

M ′(w) Ã2(w)
]

(re-

spectively

[
Ã1(w)
−N ′(w)

]
) has no finite zeros atw = 0.

Therefore, the relation (15) is an {0}-equivalence re-
lation which preserves the finite elementary divisors
of Ã1(w), Ã2(w) at w = 0 or otherwise the infinite
elementary divisors ofA1(s), A2(s).

Example 8 Consider the polynomial matrices
A1(s), A2(s) defined in Example 4. Then we can
find polynomial matricesM(s), N(s) such that




0 0
0 0

s− 2 0
0 s− 2




︸ ︷︷ ︸
M(s)

[
1 s2

0 s + 1

]

︸ ︷︷ ︸
A2(s)

=

=




s 0 −1 0
0 s 0 −1
1 0 0 s
0 1 0 1




︸ ︷︷ ︸
A1(s)




s− 2 0
0 s− 2

s(s− 2) 0
0 s(s− 2)




︸ ︷︷ ︸
N(s)

is a divisor equivalence transformation i.e.

SCh
M A1

i (s) = S0h
M̃ Ã1

i (s) =
[

I4 04×2

]

SC2
4 A2

−N

3
5

(s) = S02
4 Ã2

−Ñ

3
5

(s) =
[

I2

04×2

]

and

d
[

M A1

]
= 1 = d [A1]

d

[
A2

−N

]
= 2 = d [A2]

Therefore,A1(s), A2(s) are divisor equivalent and
thus, according to Theorem 8 possess the same finite
and infinite elementary divisors.

Although d.e. preserves both the f.e.d. and i.e.d.,
it is not known if d.e. a) is an equivalence relation on
P (p,m) and b) provides us with necessary and suffi-
cient conditions for two polynomial matrices to pos-
sess the same f.e.d. and i.e.d. Also the exact geometri-
cal meaning of the degree conditions appearing in the
definition of d.e. is under research. Now consider the
following set of polynomial matrices

Rc[s] :=
{

A(s) = A0 + A1s + · · ·+ Aqs
q ∈ R[s]r×r

det |A(s)| 6= 0 andc = rq, r ≥ 2

}

(17)

Example 9 The polynomial matricesA1(s), A2(s)
defined in example 4 belong toR4[s] sincer1q1 =
2× 2 = 1× 4 = r2q2.

The degree conditions of d.e. inRc[s] are redun-
dant as we can see in the following Lemma.

Lemma 9 [14]
(a) LetA1(s) andA2(s) ∈ Rc[s] with dimensions

m × m and (m + r) × (m + r) respectively where
r 6= 0. Then the first two conditions of d.e. implies the
degree conditions of d.e. i.e.deg M(s) ≤ deg A2(s)
anddeg N(s) ≤ deg A1(s).

(b) LetA1(s) andA2(s) ∈ Rc[s] having the same
dimensionsm×m and therefore the same degreed. If
A1(s), A2(s) satisfies (8) and the first two conditions
of d.e. thendeg M(s) = deg N(s).

Therefore, in this special case we are able to re-
state the definition of d.e. onRc[s] with only two con-
ditions.

Definition 10 Two matricesA1(s), A2(s) ∈ Rc[s]
are calleddivisor equivalent(d.e.) if there exist poly-
nomial matricesM(s), N(s) of appropriate dimen-
sions, such that equation (8) is satisfied where the
compound matrices in (9) have full rank and no f.e.d.
nor i.e.d..



Some properties of d.e. are given in the following
Theorem.

Theorem 10 [14]
(a) A1(s), A2(s) ∈ Rc[s] are d.e. iff they have the

same f.e.d. and i.e.d..
(b) D.e. is an equivalence relation onRc[s].

A different approach, concerning the equivalence
between two polynomial matrices onRc[s] is pre-
sented in [15].

Definition 11 [15] A1(s) and A2(s) ∈ Rc[s] are
called strictly equivalent iff their equivalent matrix
pencilssE1 − A1 ∈ Rc×c and sE2 − A2 ∈ Rc×c

proposed in (13), are strictly equivalent in the sense of
[16].

D.e. and s.e. define the same equivalence class on
Rc[s].

Theorem 11 [14] Strict equivalence (Definition 11)
belongs to the same equivalence class as d.e..

A geometrical meaning of d.e. is given in the se-
quel.

Definition 12 [15] Two AR-representations

Ai (σ) ξi
k = 0, k = 0, 1, 2, ..., N

whereσ is the shift operator,Ai(σ) ∈ Rc[σ]ri×ri ,
i = 1, 2 will be calledfundamentally equivalent(f.e.)
over the finite time intervalk = 0, 1, 2, ..., N iff there
exists a bijective polynomial map between their re-
spective behaviorsBN

A1(σ),BN
A2(σ).

Theorem 12 D.e. implies f.e..

Proof. From (8) we have

M(σ)A1(σ) = A2(σ)N(σ) (18)

By multiplying (18) on the right byξ1
k we get

M(σ)A1(σ)ξ1
k = A2(σ)N(σ)ξ1

k =⇒
0 = A2(σ)N(σ)ξ1

k =⇒
∃ξ2

k ∈ BA2(σ) s.t. ξ2
k = N(σ)ξ1

k (19)

According to the conditions of d.e.,
[

A1(σ)T −N(σ)T
]T

has full rank and no f.e.d. or i.e.d.. This implies [8]
thatξ1

k = 0. Therefore the map defined by the polyno-
mial matrixN(σ) : BN

A1(s)
→ BN

A2(s)
| ξ1

k 7→ ξ2
k is in-

jective. Furthermore,dimBN
A1(s)

= c = dimBN
A2(s)

,
sinceAi(σ) ∈ Rc[σ]ri×ri , and thusN(σ) is a bijec-
tion betweenBN

A1(σ),BN
A2(σ).

However, certain questions remain open concern-
ing the converse of the above theorem.

5 Conclusions

The forward and backward behaviour of a discrete
time AR-representation over a closed time interval is
connected with the finite and infinite elementary di-
visor structure of the polynomial matrix involved in
the AR-representation. Furthermore, it is known that
a polynomial matrix description can always be writ-
ten as an AR-representation, and many problems aris-
ing from the Rosenbrock system theory can be reduced
to problems based on AR-representation theory. This
was the motivation of this work that presents three
new polynomial matrix transformations, strong equiv-
alence, factor equivalence and divisor equivalence that
preserve both finite and infinite elementary divisor
structure of polynomial matrices. More specifically,
it is shown that strong equivalence is an equivalence
relation and provides necessary and sufficient condi-
tions for two polynomial matrices to possess the same
elementary divisor structure. However, its main disad-
vantage is that it consists of two separate transforma-
tions. We have shown that we can overcome this prob-
lem using the homogeneous polynomial matrix form
of the one variable polynomial matrices and then us-
ing the known transformations from the 2-D systems
theory. Following this reasoning, we have introduced
the factor equivalence transformation. Although fac-
tor equivalence is simpler in the sense that it uses
only one pair of transformation matrices instead of
two (strong equivalence), it suffers since an extra step
(homogenization) is needed. A solution to this prob-
lem is given by adding extra conditions to extended
unimodular equivalence transformation giving birth to
divisor equivalence. We have shown that both factor
equivalence and divisor equivalence provide necessary
conditions for two polynomial matrices to possess the
same elementary divisor structure. The conditions be-
come necessary and sufficient, in the case of regular
(square and nonsingular) matrices. In this special set
of matrices, both transformations are equivalence rela-
tions sharing the same equivalence class. A geometri-
cal interpretation of d.e. in terms of maps between the
solution spaces of AR-representations, is given in the
special case of regular polynomial matrices.

Finally, certain questions remain open concern-
ing the sufficiency of divisor equivalence for non-
square polynomial matrices, or square polynomial ma-
trices with zero determinant. [15] has proposed a
new notion of equivalence, named fundamental equiv-
alence, in terms of mappings between discrete time
AR-representations described by square and nonsin-
gular polynomial matrices. Further research is now
focused on: a) how can fundamental equivalence be
extended to nonsquare polynomial matrices, b) what
are its invariants, and c) which is the connection be-
tween the transformations presented in this work and
f.e. transformation. An extension of these results to
the Rosenbrock system matrix theory is also under re-
search.
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