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Abstract

The main purpose of this work is to propose new notions of equiv-
alence between polynomial matrices, that preserve both the finite and
infinite elementary divisor structure. The approach we use is twofold
: a) the ”homogeneous polynomial matrix approach” where in place of
the polynomial matrices, we study their homogeneous polynomial matrix
forms and use 2-D equivalence transformations in order to preserve their
elementary divisor structure, and b) the ”polynomial matrix approach”,
where certain conditions between the 1-D polynomial matrices and their
transforming matrices are proposed.

1 Introduction

Consider a linear homogeneous matrix difference equation of the form

A(σ)β(k) = 0, k ∈ [0, N ] (1)

A(σ) = Aqσ
q + Aq−1σ

q−1 + . . . + A0 ∈ R[s]r×r (2)

where σ denotes the forward shift operator. It is known from [1] that (1) exhibits
forward behavior due to the finite elementary divisors of A(σ) and backward
behavior due to the infinite elementary divisors of A(σ) (and not due to its
infinite zeros, as in the continuous time case). Actually, if A(s) is nonsquare or
square with zero determinant, then additionally, the right minimal indices play a
crucial role both in the forward and backward behavior of the AR-representation
[2]. Therefore, it seems quite natural to search for relations that preserve both
the finite and infinite elementary divisor structure of polynomial matrices. [3]
proposed the extended unimodular equivalence relation (e.u.e.) which has the
nice property of preserving only the finite elementary divisors. However, e.u.e.
preserves the i.e.d., only if additional conditions are added.

In the present work we use two different ways to approach and solve this
problem of polynomial matrix equivalence. Specifically, in the third section we
notice that the finite elementary divisor structure of the homogeneous polyno-
mial matrix form Aqσ

q +Aq−1σ
q−1w + . . .+A0w

q corresponding to (2) gives us
complete information for both finite and infinite elementary divisor structure of
(2). Based on this line of thought, we reduce the problem of equivalence between
1-D polynomial matrices to an equivalence between 2-D polynomial matrices.
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A more direct and transparent approach is given in the fourth section, where
we propose additional conditions to e.u.e. . It is shown, that both relations
provide necessary conditions in order for two polynomial matrices to possess
the same elementary divisor structure. However, in the special set of square
and nonsingular polynomial matrices: a) the providing conditions are necessary
and sufficient, and b) the proposed relations are equivalent relations and define
the same equivalence class.

2 Discrete time autoregressive representations
and elementary divisor structure

In what follows R, C denote respectively the fields of real and complex num-
bers and Z, Z+ denote respectively the integers and non negative integers. By
R[s] and R[s]p×m we denote the sets of polynomials and p×m polynomial ma-
trices respectively with real coefficients and indeterminate s ∈ C. Consider a
polynomial matrix

A(s) = Aqs
q + Aq−1s

q−1 + .. + A0 ∈ R[s]p×m (3)

Aj ∈ Rp×m, j = 0, 1, ..., q ≥ 1, Aq 6= 0

Definition 1 Let A(s) ∈ R[s]p×m with rankR(s)A(s) = r ≤ min (p, m) . The
values λi ∈ C that satisfy the condition ri = rankCA(λi) < r are called finite
zeros of A(s). Assume that A (s) has l distinct zeros λ1, λ2, . . . , λl ∈ C, and let

SC
A(s)(s) =

[
Q(s) 0r,m−r

0p−r,r 0p−r,m−r

]
Q(s) = diag{1, 1, ..., 1︸ ︷︷ ︸

k−1

, εk(s), εk+1(s), ..., εr(s)}

1 ≤ k ≤ r, be the Smith form of A(s) (in C) where εi(s) ∈ R[s] are the invariant
polynomials of A(s) and εj(s)|εj+1(s) j = k, k + 1, ..., r − 1. Assume that each
invariant polynomial εj(s) is decomposed into irreducible elementary divisors
over R i.e. let

εj(s) =
∏l

i=1
(s− λi)mij

where mij ∈ Z+ and 0 ≤ mi1 ≤ mi2 ≤ ... ≤ mir are the partial multiplicities of
the eigenvalue λi, i ∈ l. The terms (s − λi)mij are called the finite elementary
divisors (f.e.d.) of A(s) at s = λi. We denote also by

Sλi

A(s)(s) =
[

Qi(s) 0r,m−r

0p−r,r 0p−r,m−r

]
Qi(s) = diag{1, 1, ..., 1︸ ︷︷ ︸

ki−1

, (s− λi)miki , ..., (s− λi)mi,r}

the local Smith form of A(s) at s = λi. Finally, define as n :=
∑l

i=1

∑r
j=1 mij .
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Definition 2 If A0 6= 0, the dual matrix Ã(s) of A(s) is defined as Ã(s) :=
A0s

q + A1s
q−1 + . . . + Aq. Since rankÃ(0) = rankAq the dual matrix Ã(s) of

A(s) has zeros at s = 0 iff rankAq < r. Let rankAq < r and let

S0
Ã(s)

(s) =

 diag{1, 1, ..., 1︸ ︷︷ ︸
g−1

sµg+1 , ..., sµr} 0r,m−r

0p−r,r 0p−r,m−r

 (4)

be the local Smith form of Ã(s) at s = 0 whereµj ∈ Z+ and 0 ≤ µg+1 ≤ µg+2 ≤
... ≤ µr. The infinite elementary divisors (i.e.d.) of A(s) are defined as the finite
elementary divisors sµj of its dual Ã(s) at s = 0. Define also as µ =

∑r
i=g+1 µi.

An interesting consequence of the above definition is that in order to prove
that the polynomial matrix (3) has no infinite elementary divisors it is enough
to prove that rankAq = r. It is easily seen also that the finite elementary
divisors of A(s) describe the finite zero structure of the matrix polynomial. In
contrast, the infinite elementary divisors give a complete description of the total
structure at infinity (pole and zero structure) and not simply that associated
with the zeros [4],[5].

The structured indices of a polynomial matrix, (finite-infinite elementary
divisors and right-left minimal indices) are connected with the rank and the
degree of the matrix, as follows.

Proposition 3 [6],[1]
(a) If A(s) = A0 + A1s + · · · + Aqs

q ∈ R[s]r×r and detA(s) 6= 0, then the
total number of elementary divisors (finite and infinite ones and multiplicities
accounted for) is equal to the product rq i.e. n + µ = rq.

(b) If A(s) = A0 +A1s+ · · ·+Aqs
q is nonsquare or square with determinant

equal to zero then the total number of elementary divisors plus the left and right
minimal indices of A(s) (order accounted for) is equal to rq where now r denotes
the rank of the polynomial matrix A(s).

Example 4 Consider the polynomial matrix

A(s) =
[

1 s2

0 s + 1

]
=

[
1 0
0 1

]
︸ ︷︷ ︸

A0

+

+
[

0 0
0 1

]
︸ ︷︷ ︸

A1

s +
[

0 1
0 0

]
︸ ︷︷ ︸

A2

s2

and its dual

Ã(s) =
[

s2 1
0 s + s2

]
= A2 + A1s + A0s

2

Then

SC
A(s)(s) =

[
1 0
0 s + 1

]
;S0

Ã(s)
(s) =

[
1 0
0 s3

]
Therefore A(s) has one finite elementary divisor (s + 1) and one infinite ele-
mentary divisor s3 i.e. n + µ = 1 + 3 = 2× 2 = r × q.
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The elementary divisor structure of a polynomial matrix plays a crucial role
for the study of the behaviour of discrete time AR-Representations over a closed
time interval. Consider for example the q-th order discrete time AutoRegressive
representation :

Aqξk+q + Aq−1ξk+q−1 + · · ·+ A0ξk = 0 (5)

If σ denotes the forward shift operator σiξk = ξk+i then (5) can be written
as

A (σ) ξk = 0, k = 0, 1, ..., N − q (6)

where A (σ) as in (3) and ξk ∈ Rr, k = 0, 1, ..., N is a vector sequence. The
solution space or behavior BN

A(σ) of the AR-representation (6) over the finite
time interval [0, N ] is defined as

BN
A(σ) :=

{
(ξk)k=0,1,..,N ⊆ Rr|

ξk satisfies (6) for k ∈ [0, N ]

}
⊆ (Rr)N+1 (7)

and we have

Theorem 5 (a) (regular case, [7]) If A(s) ∈ R[s]r×r,detA(s) 6= 0 then the di-
mension of the behavior of (6) BN

A(σ), over the finite time interval k = 0, 1, ..., N ≥
q is given by

dim BN
A(σ) = rq = n + µ

(b) (non-regular case, [8]) If A(s) is nonsquare or square with zero determinant
then we define by

R (ξ1 (k) , ξ2 (k)) =


(ξ1 (k) , ξ2 (k)) ∈ BN

A(σ) ×BN
A(σ) : ξ1 (i) = ξ2 (i)

for i = 0, 1, ..., q − 1 (same initial conditions)
and i = N − q + 1, .., N (same final conditions)


R is an equivalence relation, that divides the space BN

A(σ) into equivalence classes

and creates the space B̂N
A(σ) := BN

A(σ)/R. The dimension of B̂N
A(σ) is n + µ + 2ε

where ε denotes the total number of right minimal indices (since the left minimal
indices play no role in the construction of the right solution space).

BN
A(σ) consists of two subspaces [8], the one corresponding to the finite ele-

mentary divisors of A (σ) (and right minimal indices for the nonregular case),
which gives rise to solutions moving in the forward direction of time and the
other corresponding to the infinite elementary divisors of A (σ) (and right mini-
mal indices for the nonregular case), which gives rise to solutions moving in the
backward direction of time.

Example 6 Consider the AR-Representation[
1 σ2

0 σ + 1

]
︸ ︷︷ ︸

A(σ)

[
ξ1

k

ξ2
k

]
︸ ︷︷ ︸

ξk

= 02×1

Then

SC
A(s)(s) =

[
1 0
0 s + 1

]
;S0

Ã(s)
(s) =

[
1 0
0 s3

]
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BN
A(σ) =

〈(
1
−1

)
(−1)k︸ ︷︷ ︸

due to SC
A(s)(s)

,

(
δN−k

0

)
,

(
δN−k+1

0

)
,

(
δN−k+2

−δN−k

)
︸ ︷︷ ︸

due to S0
Ã(s)

(s)

〉

where < · > denotes the space spanned by the included discrete-time vectors,
and the discrete-time impulse δi defined by

δi =
{

1
0

i = 0
i 6= 0

It is easily seen that

dim BN
A(σ) = rq = 2× 2 = 1 + 3 = n + µ

where r is the dimension of the square polynomial matrix A(σ) and q is the
highest degree among the coefficients of the matrix A(s).

Example 7 Consider the polynomial matrix description(
σ2

)
ξk = −uk

yk = (σ + 1) ξk

In order to find the state-input pair which gives rise to zero output (output
zeroing problem) we have to solve the following system of difference equations[

σ2 1
σ + 1 0

]
︸ ︷︷ ︸

P (σ)

[
ξk

uk

]
︸ ︷︷ ︸

xk

= 02×1

It is easily seen that the above discrete time AR-Representation is the one we
have already studied in the previous example and therefore the state-input pair
which gives rise to zero output is given by a simple transformation of the space
BN

A(σ) defined in the previous example i.e.

(
ξk

uk

)
=

 −l1 (−1)k − l4δN−k

l1 (−1)k + l2δN−k + l3δN−k+1 + l4δN−k+2


Since the elementary divisor structure of a polynomial matrix plays a crucial

role in the study of discrete time AR-representations and/or polynomial matrix
descriptions over a closed time interval, we are interested in finding relations
that leave invariant the elementary divisor structure of polynomial matrices.

3 The homogeneous polynomial matrix approach

We present in this section two different approaches in order to study the infinite
elementary divisor structure of a polynomial matrix. The first approach is to
apply a suitably chosen conformal mapping to bring the infinity point to some
finite point, while the second approach is to use homogeneous polynomials to
study the infinity point.

Let now P (m, l) be the class of (r + m) × (r + l) polynomial matrices, of
any number of variables, where l and m are fixed integers and r ranges over all
integers which are greater than max (−m,−l).
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Definition 8 [3] A1(s), A2(s) ∈ P (m, l) are said to be extended unimodular
equivalent (e.u.e.) if there exist polynomial matrices M(s), N(s) such that[

M(s) A2(s)
] [

A1(s)
−N(s)

]
= 0 (8)

where the compound matrices[
M(s) A2(s)

]
;

[
A1(s)
−N(s)

]
(9)

have full rank ∀s ∈ C.

E.u.e. relates matrices of different dimensions and preserves the f.e.d. of
the polynomial matrices involved [3]. In the case that we are interested to
preserve only the elementary divisors at a specific point s0 then we introduce
{s0}-equivalence relation.

Definition 9 [9] A1(s), A2(s) ∈ P (m, l) are said to be {s0}-equivalent if there
exist rational matrices M(s), N(s), having no poles at s = s0, such that (8) is
satisfied and where the compound matrices in (9) have full rank at s = s0.

{s0}-equivalence preserves only the f.e.d. of A1(s), A2(s) ∈ P (m, l) of the
form (s− s0)

i
, i > 0 [9].

Based on the above two polynomial matrix relations we can easily define the
following polynomial matrix relation :

Definition 10 A1(s), A2(s) ∈ P (m, l) are said to be strongly equivalent if
there exists :

(i) polynomial matrices M1(s), N1(s), such that (8) is satisfied and where
the compound matrices in (9) have full rank ∀s ∈ C.

(ii) rational matrices M2(s), N2(s), having no poles at s = 0, such that (8)
between the dual polynomial matrices Ã1(s), Ã2(s) is satisfied and where the
respective compound matrices in (9) have full rank at s = 0.

Some nice properties of the above relation are given by the following The-
orem.

Theorem 11 (a) Strong equivalence is an equivalence relation on P (m, l).
(b) A1(s), A2(s) ∈ P (m, l) are strongly equivalent iff SC

A1(s)
(s) is a trivial

expansion of SC
A2(s)

(s) and S0
Ã1(s)

(s) is a trivial expansion of S0
Ã2(s)

(s) i.e. s.e.
leaves invariant the finite and infinite elementary divisors.

Proof. (a) E.u.e. and {s0}−equivalence are equivalence relations on P (m, l)
[3], [9], and thus strong equivalence is an equivalence relation on P (m, l) since
it is an intersection of e.u.e. and {s0}−equivalence.

(b) Strong equivalence is an intersection of the e.u.e. and the {s0}−equivalence
relation. However, A1(s), A2(s) ∈ P (m, l) are : 1) e.u.e. iff SC

A1(s)
(s) is a trivial

expansion of SC
A2(s)

(s), and 2) {s0}−equivalent iff S0
Ã1(s)

(s) is a trivial expansion

of S0
Ã2(s)

(s).
Based on the properties of e.u.e. and {s0}-equivalence of preserving respec-

tive the f.e.d. and the i.e.d. at s = s0, we can easily observe that the above
relation has the nice property of preserving both the finite and infinite elemen-
tary divisors of Ai(s).
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Example 12 Consider the polynomial matrices

A1(s) =
[

1 s2

0 s + 1

]
; A2(s) =


s 0 −1 0
0 s 0 −1
1 0 0 s
0 1 0 1


and their dual polynomial matrices

Ã1(s) =
[

s2 1
0 s + s2

]
; Ã2(s) =


1 0 −s 0
0 1 0 −s
s 0 0 1
0 s 0 s


Then we can find polynomial matrices M(s), N(s) and M̃(s), Ñ(s) such that

0 0
0 0
1 0
0 1


︸ ︷︷ ︸

M(s)

[
1 s2

0 s + 1

]
︸ ︷︷ ︸

A1(s)

=

=


s 0 −1 0
0 s 0 −1
1 0 0 s
0 1 0 1


︸ ︷︷ ︸

A2(s)


1 0
0 1
s 0
0 s


︸ ︷︷ ︸

N(s)

is an e.u.e. and 
0 0
0 0
1 0
0 1


︸ ︷︷ ︸

M̃(s)

[
s2 1
0 s + s2

]
︸ ︷︷ ︸

Ã1(s)

=

=


1 0 −s 0
0 1 0 −s
s 0 0 1
0 s 0 s


︸ ︷︷ ︸

Ã2(s)


s 0
0 s
1 0
0 1


︸ ︷︷ ︸

Ñ(s)

is a {0}−equivalence relation. Therefore A1(s), A2(s) are s.e. and thus ac-
cording to Theorem 11 possess the same finite and infinite elementary divisors
i.e.

SC
A(s)(s) =

[
1 0
0 s + 1

]
; SC

A2(s)
(s) =

[
I3 0
0 s + 1

]
S0

Ã1(s)
(s) =

[
1 0
0 s3

]
; S0

Ã2(s)
(s) =

[
I3 0
0 s3

]
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Strong equivalence relation has the disadvantage that it consists of two sep-
arate relations. In order to overcome this difficulty we use the homogeneous
variable to represent infinity.

Define as the homogeneous form of A(s) the matrix

AH(s, w) = A0s
n + A1s

n−1w + · · ·+ Anwn (10)

It is easily seen that the finite elementary divisors of A(s) are actually the finite
elementary divisors of AH(s, 1). Similarly to the previous definition we can
easily see that the infinite elementary divisors of A(s) are actually the finite
elementary divisors of AH(1, w) at w = 0. An alternative definition of the finite
and infinite elementary divisors in terms of the homogeneous polynomial matrix
(10) is given below.

Definition 13 [6] Let Di be the greatest common divisor of the i× i minors of
AH , and define D0 = 1. Then Di|Di+1, and let Di|Di−1 =: ci

∏
(as− bw)`i(b/a),

where the product is taken over all pairs (1, b) and (0, 1) , and 1/0 is denoted
by ∞. The factors (as− bw)`i(b/a), with `i (b/a) 6= 0 are called the elementary
divisors of A(s), and the integers `i the elementary exponents of A(s).

It is easily seen that the pairs (0, 1) corresponds to the i.e.d. while the
remaining pairs to the f.e.d. .

Example 14 Consider the polynomial matrix A(s) defined in Example 12 i.e.

A(s) =
[

1 s2

0 s + 1

]
Define also the homogeneous polynomial matrix

AH(s, w) =
[

w2 s2

0 sw + w2

]
Then

D0 = 1, D1 = 1, D2 = w3 (s + w)

and therefore the Smith form of AH(s, w) over R[s, w] is given by

SC
AH(s,w)(s, w) =

[
1 0
0 w3 (s + w)

]
where we have the following pairs of (a, b) : (1, 1) with exponent 1 and (0, 1)
with exponent 3. The first pair corresponds to the f.e.d. (s + 1)1, while the
second pair corresponds to the i.e.d. w3.

An extension of the e.u.e. into the 2-D setting is given by two relations, factor
and zero coprime equivalence [10]. While both of them preserve the invariant
polynomials of the equivalent matrices [10], the second ones has the additional
property to preserve the ideals of a polynomial matrix [11] and therefore is
more restrictive. Since we are interested only in the invariant polynomials of
the homogeneous polynomial matrices and not in their corresponding ideals we
present and use only the first of the above two relations.
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Definition 15 A1(s, w), A2(s, w) ∈ P (m, l) are said to be factor coprime
equivalent (f.c.e.) if there exists polynomial matrices M(s, w), N(s, w) such
that [

M(s, w) A2(s, w)
] [

A1(s, w)
−N(s, w)

]
= 0 (11)

where the compound matrices

[
M(s, w) A2(s, w)

]
;

[
A1(s, w)
−N(s, w)

]
(12)

are factor coprime i.e. if all the (r + m)×(r + m) (resp. (r + l)×(r + l)) minors

of
[

M(s, w) A2(s, w)
]

(resp.
[

A1(s, w)
−N(s, w)

]
) have no polynomial factor.

Some nice properties of the above relation are given by the following The-
orem.

Theorem 16 [12], [10]
1. F.c.e. is only reflexive and transitive and therefore is not an equivalence

relation. F.c.e. is an equivalence relation on the set of square and nonsingular
polynomial matrices.

2. If A1(s), A2(s) ∈ P (m, l) are f.c.e. then they have the same invariant
polynomial.

Since a) the above relation leaves invariant the invariant polynomials of
the equivalent polynomial matrices and b) the fact that the elementary divisor
structure of a polynomial matrix is completely characterized by the invariant
polynomials of its homogeneous polynomial matrix, it seems quite natural to
reduce the problem of equivalence between two 1-d polynomial matrices to the
problem of equivalence between its respective homogeneous polynomial matri-
ces.

Definition 17 A1(s), A2(s) ∈ P (m, l) are defined to be factor equivalent if
their respective homogeneous polynomial matrices AH

1 (s, w), AH
2 (s, w) are factor

coprime equivalent.

Due to the properties of the factor coprime equivalence, it is easily to prove
the following.

Corollary 18 i) F.e. is reflexive and transitive. F.e. is an equivalence relation
on the set of square and nonsingular polynomial matrices.

ii) If A1(s), A2(s) ∈ P (m, l) are f.e. then they have the same finite and
infinite elementary divisors.

Although, factor coprime equivalence does not satisfy the symmetry prop-
erty in the general class of two variable polynomial matrices, this does not
necessary implies that the symmetry property is also not satisfied to the special
class of homogeneous polynomial matrices. However, as we can see from the
following antiexample, the symmetry property is also not satisfied to the class
of homogeneous polynomial matrices and therefore f.e. is not an equivalence
relation.
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Example 19 Consider the polynomial matrices

A1(s) =
[

1 s
]

A2(s) =
[

1 s 0
0 1 s

]
and their respective homogeneous polynomial matrices

AH
1 (s, w) =

[
w s

]
AH

2 (s, w) =
[

w s 0
0 w s

]
Then we can find polynomial matrices M(s, w), N(s, w) such that[

q31w
q41w

]
︸ ︷︷ ︸

M(s,w)

[
w s

]︸ ︷︷ ︸
AH

1 (s,w)

=

=
[

w s 0
0 w s

]
︸ ︷︷ ︸

AH
2 (s,w)

 q31w − q41s q31s
q41w 0

0 q41w


︸ ︷︷ ︸

N(s,w)

where

SC[
M AH

2

] (s, w) =
[

I2 02×2

]
SC AH

1

−N

 (s, w) =
[

I2

02×2

]

Therefore, A1(s), A2(s) are f.e. and thus, according to Corollary 18 they pos-
sess the same f.e.d and i.e.d. (none). However, it is easily seen that the only
symmetry transformation is of the form

[
m1 n6 + m21w

]︸ ︷︷ ︸
M(s,w)

[
w s 0
0 w s

]
︸ ︷︷ ︸

AH
2 (s,w)

=

=
[

w s
]︸ ︷︷ ︸

AH
1 (s,w)

[
m1 − n41s m21w + n6 − n51s m21s

n41w m1 + n51w n6

]
︸ ︷︷ ︸

N(s,w)

where the compound matrix [
AH

2 (s, w)
−N(s, w)

]
has the common factor q(s) = n41s

2−m1s−n51ws+n6w. Therefore, the sym-
metric transformation is not factor coprime or otherwise the symmetry property
of f.e. is not satisfied.

In the sequel, we give another example where the finite and infinite elemen-
tary divisors of the polynomial matrices A1(s), A2(s) is not the empty set.
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Example 20 Consider the polynomial matrices A1(s), A2(s) defined in Exam-
ple 12,and their respective homogeneous polynomial matrices

AH
1 (s, w) =

[
w2 s2

0 sw + w2

]

AH
2 (s, w) =


s 0 −w 0
0 s 0 −w
w 0 0 s
0 w 0 w


Then we can find polynomial matrices M(s, w), N(s, w) such that

0 0
0 0
1 0
0 1


︸ ︷︷ ︸

M(s,w)

[
w2 s2

0 sw + w2

]
︸ ︷︷ ︸

AH
1 (s,w)

=

=


s 0 −w 0
0 s 0 −w
w 0 0 s
0 w 0 w


︸ ︷︷ ︸

AH
2 (s,w)


w 0
0 w
s 0
0 s


︸ ︷︷ ︸

N(s,w)

where

SC[
M AH

2

] (s, w) =
[

I4 04×2

]
SC AH

1

−N

 (s, w) =
[

I2

04×2

]

Therefore, A1(s), A2(s) are f.e. and thus, according to Corollary 18 they possess
the same f.e.d and i.e.d.. However, it is easily seen that the compound matrix[

M A1

]
has singularities at s = w = 0 for any matrix M(s, w) and therefore,

AH
1 (s, w), AH

2 (s, w) are not zero coprime equivalent ([12], [10]), although they
possess the same invariant polynomials. Therefore, it is seen that zero coprime
equivalence would be quite restrictive for our purpose. This is easily checked out
in case where A1(s), A2(s) are of different dimensions. Then there is no zero
coprime equivalence relation between AH

1 (s, w), AH
2 (s, w).

For 1-D systems, [13] has presented an algorithm that reduces a general arbi-
trary polynomial matrix A(s) to an equivalent matrix pencil. More specifically,
given the polynomial matrix A(s) in (3) and the matrix pencil

sE −A :=


sIm −Im 0 · · · 0
0 sIm −Im · · · 0
...

...
...

. . .
...

0 0 0 · · · −Im

A0 A1 A2 · · · Aqs + Aq−1

 (13)

the following holds.
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Theorem 21 The polynomial matrix A(s) defined in (3) and the matrix pencil
sE −A defined in (13) are f.e..

Proof. Consider the relation

[
0(q−1)m,p

Ip

]
︸ ︷︷ ︸

M(s,w)

AH(s, w) = [sE − wA]


wq−1Im

wq−2sIm

...
wsq−2Im

sq−1Im


︸ ︷︷ ︸

N(s,w)

Then, the compound matrix
[

M(s, w) sE − wA
]

has two qm × qm minors
equal to s(q−1)m and (−w)(q−1)m respectively and thus the matrices are factor
coprime These minors are .

det


sIm −wIm 0 · · · 0
0 sIm −wIm · · · 0
...

...
...

. . .
...

0 0 0 · · · sIm

A0w A1w A2w · · · Aq−2w

0
0
...
0
Ip



det


−wIm 0 · · · 0
sIm −wIm · · · 0

...
...

. . .
...

0 0 · · · −wIm

A1w A2w · · · Aqs + Aq−1w

0
0
...
0

Im


and are equal to s(q−1)m and (−w)(q−1)m respectively. Similarly the the com-

pound matrix
[

AH(s, w)
−N(s, w)

]
has two coprime m × m minors, s(q−1)m and

w(q−1)m, and thus is factor coprime i.e.

det
[
wq−1Im

]
= w(q−1)m ; det

[
sq−1Im

]
= s(q−1)m

Therefore, the matrices
[

M(s, w) sE − wA
]

and
[

AH(s, w)
−N(s, w)

]
are factor

coprime, AH(s, w) and sE−wA are factor coprime equivalent and A(s), sE−A
are factor equivalent.

An illustrative example of the above theorem has already been given in
example 20. A direct consequence of the above theorem is given by the following
corollary.

Corollary 22 A(s) and sE−A possess the same finite and infinite elementary
divisor structure.

Proof. A(s) and sE − A are f.e. from Theorem 21 and thus according to
Corollary 18 possess the same finite and infinite elementary divisor structure.

A completely different and more transparent approach to the problem of
equivalence between 1-D polynomial matrices, without using the theory of 2-D
polynomial matrices, is given in the next section.
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4 The polynomial matrix approach

Although e.u.e. preserves the finite elementary divisors, it does not preserve the
infinite elementary divisors, as we can see in the following example.

Example 23 Consider the following e.u.e. relation[
1 0
0 1

]
︸ ︷︷ ︸

M(s)

[
1 s2

0 s + 1

]
︸ ︷︷ ︸

A1(s)

=
[

1 s3

0 s + 1

]
︸ ︷︷ ︸

A2(s)

[
1 s2 − s3

0 1

]
︸ ︷︷ ︸

N(s)

Although A1(s), A2(s) have the same finite elementary divisors, i.e.

SC
A1(s)

(s) =
[

1 0
0 s + 1

]
= SC

A2(s)
(s)

they have different infinite elementary divisors i.e.

S0
Ã1(s)

(s) = S0 s2 1
0 s + s2

 =
[

1 0
0 s3

]

S0
Ã2(s)

(s) = S0 s3 1
0 s2 + s3

 =
[

1 0
0 s5

]

The above example indicates that further restrictions must be placed on
the compound matrices (9), in order to ensure that the associated relation will
leave invariant both the finite and infinite elementary divisors. A new relation
between polynomial matrices of the same set P (m, l) is given in the following
definition.

Definition 24 Two matrices A1(s), A2(s) ∈ P (m, l) are said to be divisor
equivalent (d.e.) if there exist polynomial matrices M(s), N(s) of appropriate
dimensions, such that (8) is satisfied, where

(i) the compound matrices in (9) are left prime and right prime matrices,
respectively,

(ii) the compound matrices in (9) have no infinite elementary divisors,
(iii) the following degree conditions are satisfied

d
[

M(s) A2(s)
]

= d [A2(s)] or d [M(s)] ≤ d [A2(s)] (14)

d

[
A1(s)
−N(s)

]
= d [A1(s)] or d [N(s)] ≤ d [A1(s)]

where d[P ] denotes the degree of P (s) seen as a polynomial with nonzero matrix
coefficients.

An important property of the above relation is given by the following The-
orem.

Theorem 25 If A1(s), A2(s) ∈ P (m, l) are divisor equivalent then they have
the same finite and infinite elementary divisors.

13



Proof. According to condition (i) of ”divisor equivalence”, A1(s) and A2(s)
are also e.u.e. and thus have the same finite elementary divisors.

(8) may be rewritten by setting s = 1
w , as

[
M( 1

w ) A2( 1
w )

] [
A1( 1

w )
−N( 1

w )

]
= 0

and then premultiplying and postmultiplying by w
d
[

M(s) A2(s)
]
and w

d

 A1(s)
−N(s)


respectively as

w
d
[

M(s) A2(s)
] [

M( 1
w ) A2( 1

w )
]
× (15)

×
[

A1( 1
w )

−N( 1
w )

]
w

d

 A1(s)
−N(s)


= 0 ⇐⇒

˜[
M(w) A2(w)

] ˜[
A1(w)
−N(w)

]
= 0

where ˜denotes the dual matrix. Now since d
[

M(s) A2(s)
]

= d [A2(s)] and

d

[
A1(s)
−N(s)

]
= d [A1(s)] equation (15) may be rewritten as

[
M ′(w) Ã2(w)

] [
Ã1(w)
−N ′(w)

]
= 0 (16)

The compound matrix
[

M(s) A2(s)
]

(respectively
[

A1(s)
−N(s)

]
) has no in-

finite elementary divisors and therefore its dual
[

M ′(w) Ã2(w)
]

(respec-

tively
[

Ã1(w)
−N ′(w)

]
) has no finite zeros at w = 0. Therefore, the relation

(15) is an {0}-equivalence relation which preserves the finite elementary di-
visors of Ã1(w), Ã2(w) at w = 0 or otherwise the infinite elementary divisors of
A1(s), A2(s).

Example 26 Consider the polynomial matrices A1(s), A2(s) defined in Exam-
ple 12. Then we can find polynomial matrices M(s), N(s) such that

0 0
0 0

s− 2 0
0 s− 2


︸ ︷︷ ︸

M(s)

[
1 s2

0 s + 1

]
︸ ︷︷ ︸

A2(s)

=

=


s 0 −1 0
0 s 0 −1
1 0 0 s
0 1 0 1


︸ ︷︷ ︸

A1(s)


s− 2 0

0 s− 2
s(s− 2) 0

0 s(s− 2)


︸ ︷︷ ︸

N(s)
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is a divisor equivalence relation i.e.

SC[
M A1

] (s) = S0[
M̃ Ã1

] (s) =
[

I4 04×2

]
SC A2

−N

 (s) = S0 Ã2

−Ñ

 (s) =
[

I2

04×2

]

and

d
[

M A1

]
= 1 = d [A1]

d

[
A2

−N

]
= 2 = d [A2]

Therefore, A1(s), A2(s) are divisor equivalent and thus, according to Theorem
25 possess the same finite and infinite elementary divisors.

Although d.e. preserves both the f.e.d. and i.e.d., it is not known if d.e.
a) is an equivalence relation on P (p, m) and b) provides us with necessary and
sufficient conditions for two polynomial matrices to possess the same f.e.d. and
i.e.d. Also the exact geometrical meaning of the degree conditions appearing
in the definition of d.e. is under research. Now consider the following set of
polynomial matrices

Rc[s] :=
{

A(s) = A0 + A1s + · · ·+ Aqs
q ∈ R[s]r×r

detA(s) 6= 0 and c = rq, r ≥ 2

}
(17)

Example 27 The polynomial matrices A1(s), A2(s) defined in example 12 be-
long to R4[s] since r1q1 = 2× 2 = 1× 4 = r2q2.

The degree conditions of d.e. in Rc[s] are redundant as we can see in the
following Lemma.

Lemma 28 [14]
(a) Let A1(s) and A2(s) ∈ Rc[s] with dimensions m×m and (m+r)×(m+r)

respectively where r 6= 0. Then the first two conditions of d.e. implies the degree
conditions of d.e. i.e. deg M(s) ≤ deg A2(s) and deg N(s) ≤ deg A1(s).

(b) Let A1(s) and A2(s) ∈ Rc[s] having the same dimensions m × m and
therefore the same degree d. If A1(s), A2(s) satisfies (8) and the first two con-
ditions of d.e. then deg M(s) = deg N(s).

Therefore, in this special case we are able to restate the definition of d.e. on
Rc[s] with only two conditions.

Definition 29 Two matrices A1(s), A2(s) ∈ Rc[s] are called divisor equiva-
lent (d.e.) if there exist polynomial matrices M(s), N(s) of appropriate dimen-
sions, such that equation (8) is satisfied where the compound matrices in (9)
have full rank and no f.e.d. nor i.e.d..

Some properties of d.e. are given in the following Theorem.

Theorem 30 [14]
(a) A1(s), A2(s) ∈ Rc[s] are d.e. iff they have the same f.e.d. and i.e.d..
(b) D.e. is an equivalence relation on Rc[s].
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A different approach, concerning the equivalence between two polynomial
matrices on Rc[s] is presented in [15].

Definition 31 [15]
A1(s) and A2(s) ∈ Rc[s] are called strictly equivalent iff their equivalent

matrix pencils sE1 − A1 ∈ Rc×c and sE2 − A2 ∈ Rc×c proposed in (13), are
strictly equivalent in the sense of [16].

D.e. and s.e. define the same equivalence class on Rc[s].

Theorem 32 [14]
Strict equivalence (Definition 31) gives the same equivalence class as d.e..

A geometrical meaning of d.e. is given in the sequel.

Definition 33 [15]
Two AR-representations

Ai (σ) ξi
k = 0, k = 0, 1, 2, ..., N

where σ is the shift operator, Ai(σ) ∈ Rc[σ]ri×ri , i = 1, 2 will be called fun-
damentally equivalent (f.e.) over the finite time interval k = 0, 1, 2, ..., N
iff there exists a bijective polynomial map between their respective behaviors
BN

A1(σ),B
N
A2(σ).

S.e. and f.e. define the same equivalence class on Rc[s].

Theorem 34 [17]
Strict equivalence (Definition 31) gives the same equivalence class as funda-

mental equivalence.

A direct consequence of Theorem 32 and Theorem 34 is given by the following
Theorem.

Theorem 35 A1(s), A2(s) ∈ Rc[s] are d.e. iff they are f.e..

Proof. Although the proof is a direct consequence of Theorem 32 and Theorem
34, here an alternative proof of the ”if” part.

From (8) we have
M(σ)A1(σ) = A2(σ)N(σ) (18)

By multiplying (18) on the right by ξ1
k we get

M(σ)A1(σ)ξ1
k = A2(σ)N(σ)ξ1

k =⇒
0 = A2(σ)N(σ)ξ1

k =⇒
∃ξ2

k ∈ BA2(σ) s.t. ξ2
k = N(σ)ξ1

k (19)

The map defined by the polynomial matrix N(σ) : BN
A1(s)

→ BN
A2(s)

| ξ1
k 7→ ξ2

k

is injective iff N(σ)ξ1
k = 0 implies that ξ1

k = 0. Since ξ1
k ∈ BN

A1(s)
we have

additionally that A1(σ)ξ1
k = 0. Therefore, we have that[

A1(σ)
N(σ)

]
ξ1

k = 0
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However, the above system has only the zero solution [8] i.e. ξ1
k = 0 iff the

compound matrix
[

A1(σ)T −N(σ)T
]T has full rank and no f.e.d. or i.e.d.,

a condition that is satisfied by the conditions of d.e. Therefore the map de-
fined by the polynomial matrix N(σ) : BN

A1(s)
→ BN

A2(s)
| ξ1

k 7→ ξ2
k is injective.

Furthermore, dimBN
A1(s)

= c = dimBN
A2(s)

, since Ai(σ) ∈ Rc[σ]ri×ri , and thus
N(σ) is a bijection between BN

A1(σ),B
N
A2(σ).

5 Conclusions

The forward and backward behaviour of a discrete time AR-representation over
a closed time interval is connected with the finite and infinite elementary divisor
structure of the polynomial matrix involved in the AR-representation. Further-
more, it is known that a polynomial matrix description can always be written as
an AR-representation, and many problems arising from the Rosenbrock system
theory can be reduced to problems based on AR-representation theory. This
was the motivation of this work that presents three new polynomial matrix
relations, strong equivalence, factor equivalence and divisor equivalence that
preserve both finite and infinite elementary divisor structure of polynomial ma-
trices. More specifically, it is shown that strong equivalence is an equivalence
relation and provides necessary and sufficient conditions for two polynomial
matrices to possess the same elementary divisor structure. However, its main
disadvantage is that it consists of two separate relations. We have shown that
we can overcome this problem using the homogeneous polynomial matrix form
of the one variable polynomial matrices and then using the known relations from
the 2-D systems theory. Following this reasoning, we have introduced the factor
equivalence relation. Although factor equivalence is simpler in the sense that
it uses only one pair of transformation matrices instead of two (strong equiv-
alence), it suffers since an extra step (homogenization) is needed. A solution
to this problem is given by adding extra conditions to extended unimodular
equivalence relation giving birth to divisor equivalence. We have shown that
both factor equivalence and divisor equivalence provide necessary conditions for
two polynomial matrices to possess the same elementary divisor structure. The
conditions become necessary and sufficient, in the case of square and nonsin-
gular matrices. In this special set of matrices, both relations are equivalence
relations sharing the same equivalence class. A geometrical interpretation of
d.e. in terms of maps between the solution spaces of AR-representations, is
given in the special case of square and nonsingular polynomial matrices.

Finally, certain questions remain open concerning the sufficiency of divi-
sor equivalence for nonsquare polynomial matrices, or square polynomial ma-
trices with zero determinant. [15] has proposed a new notion of equivalence,
named fundamental equivalence, in terms of mappings between discrete time
AR-representations described by square and nonsingular polynomial matrices.
Further research is now focused on: a) how can fundamental equivalence be
extended to nonsquare polynomial matrices, b) what are its invariants, and c)
which is the connection between the relations presented in this work and f.e.
relation. An extension of these results to the Rosenbrock system matrix theory
is also under research.
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