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i Objectives

« A new algorithm is presented for the
determination of the generalized inverse and the
drazin inverse of a polynomial matrix based on the
discrete Fourier transform.

e The above algorithms are implemented in the
Mathematica programming language.



Discrete Fourier Transform

Definition 1. In order for the finite sequence X (k) and the sequence X (k) to constitute a
DFT pair the following relations should hold [Dudgeon, 1984]:

LK) = X W™, X(K)=——— 3 X (KW
M +1
27] :
where W =eM+ and X (k), X (k) are discrete argument matrix-valued functions,
with dimensions p x m.

Definition 2. In order for the finite sequence X (k,,k,) and the sequence X (r,,r,) to constitute a
DFT pair the following relations should hold [Dudgeon, 1984]:

M; M, 1 M; M,

X (0 1) = 20 3 XKy, k)W, 5,72 X (K, K) = =0 X (1, 1 W W,

k,=0k,=0 r=0r1,=0
where
2rj
W =e"" R=(M,+1)x (M, +1)
and X (k,,k,), X (r,,r,) are discrete argument matrix-valued functions,
with dimensions pxm.



i Generalized Inverse

For every matrix Ae R™™  aunigue matrix A" € R™" | which is called generalized
inverse, exists satisfying
(i) AATA=A
(i) ATAA" = A7
(iii) (AA") = AAY
. T
(iv) (A'A) =A'A
where A" denotes the transpose of A . Inthe special case that the matrix A is square
nonsingular matrix, the generalized inverse of A is simply its inverse i.e. A" =A™,

Inan analogous way we define the generalized inverse A(S)" € R(s)™" ofthe
polynomial matrix A(s) € R[s]""



Computation of the generalized inverse

[Karampetakis 1997] Let A(s) € R[s]”" and

a(s,z) :det[zl ; —A(S)A(S)T} =a,(s)z" +a,(s)z" " +..+a,_,(s)z+a,(s),

a,(s) =1, be the characteristic polynomial of A(s)A(s)' . Let a,(s)=0,..,a,()=0
while a, (s)#0 and A:={s, e R:a,(s;) =0} Then the generalized inverse A(s)" of
A(s) for se R—A isgiven by

A(S)" =525 AS) B4 (), B1(8) =3, () AG)AG)' | +.ta 4 (9)1,

If k =0 is the largest integer such that a (s) # 0, then A(s)" =0. For those s, € A
find the largest integer k; <k such that a, (s;) # 0 and then the generalized inverse
A(s;)" of A(s,) is given by

AG)" =355 AS) B (8), B, 1(5)=a,(9) AG)AG) | +.ta ()],

aki (Si )




Computation of the generalized inverse via DFT
Step 1. (Evaluation of the polynomial a(s,z))

a(s,z) = ZZa,l stz =det| 21, - A(S)A(s)" |

,=0 1,=0

e We use the following R =(2pg+1)x(p+1) interpolation points
u(r)=W,",i=1L2andr, =0,1...,M,

27

where W =e"#i=12;M, =2pq;M, = p

° &y, = detfu, ()1 — A(uy(R) A, (r)) 1= ZZ% W,

,=0 1,=0
[4,.] and [a,, ] form a DFT pair.

n N

r1'1 rly
° |1 |2 - Z Z r1 r2 W

r1 =0r,=



Step 2. (Evaluate a,(s) )

Find k:a,,,(S)=2a,,,(s)==2a,(s)=0 and a (s)#0 ora ,=a,,==28 ,,=0 Vi
and &, #0 forsome k.



Step 3. (Evaluate B(s)= A(s)' B _,(s) where

i B, ,(5) = 2, () AG)AG) | +.ta(9)1,)

e We use the following R =(2p-1)q+1 interpolation points

2

u(r) =W W ==
. Br=Bu(r)=YBW™"
=0

[B.] and [B,] form a DFT pair

1S o
o B :Ez BW",1=0,1...,(2p-1)q
r=0



i Step 4. Evaluate the generalized inverse

B(s)
—a, (S)

A(s)" =



i Drazin Inverse

For every matrix Ae R™™, a unique matrix A® € R™™ , which is called Drazin
Inverse, exists satisfying

(i) A“*AP = A for k =ind(A) =min(k e N :rank(Ak] = rank[Ak”j)

(i) A°AA®° = A°

(i) AA® = A°A



i Drazin Inverse

[Staminirovic and Karampetakis 2000] Consider a nonregular one-variable rational
matrix A(s). Assume that

a(z,s)=det[zl, - A(s)[Fa,(s)z" +a,(s)z" " +...+a,_,(s)z +a,(s) where

a,(s)=1 zeC is the characteristic polynomial of A(s) consider the following
sequence of mxm polynomial matrices

B (s)= a, (S)A(S)! +...+ a;,(S)A(S) +a;(s)l,,a,(s)=L j=0,.,m

Let a,(s)=0,...,a,,(s)=0, a(s)=0.Define the following

setA={s, €C:a(s;)=0}AlsoassumeB,_(s)=0,...,B.(s)=0,B,_(s) # 0 and k=r-t.
In the case that se C\A and k >0, the Drazin inverse of A(s) is given by

A® = (—1)a,(s) " A®S) By ()"

B, (5) = 8y (S)A(s) " +.. 4+, (5)A(s) +a, (5)I,,

In the case s C\A and k=0, we get A(s)® =0.



Computation of the Drazin Inverse via DFT
Step 1 (Evaluation of a(s,z))

L)

a(s,z)=) > a sz =det[zl —A(s)]

e We use the following R =(2mg+1)x(m+1) points

u(r)=W"i=12, W =e""i=12,M,=2mq;M, =m

n N

e &, =det[u,(r,)I,— AU (r))]= ZZall W, W,

,=0 1,=0

[4,.] and [a,, ] form a DFT pair

. N

. = ZZ . W, *W,?2 1 =0,1..,2mq, 1,=0,1.,m

|1 |2
r1 =0 r,=0



Step 2

Find t:a,,(s)=a,,(s)=...=a,(s)=0
a(s)#=0ora  =a,==2a,,=0 Vvranda, #0 forsome t.

oLt



Step 3 (Evaluate r>t:B, (s)=0,..,B,(s)=0,B,,(s) =0
B, (s)=A(s) +a,(s)A(s) " +a,_,(S)A(S) +a,(s)1,, )

J=m
Determine the value of B(s) at the following n; +1 points (or any other n; +1
distinct points)

27
u(r)=W=—",W =e""

Do WHILE (B;(s)=0 Vvu(r))
i=j-1
Determine the value of B, (s) at the following n; +1 points

27j

u(r)=w—"w =e""

END DO
r=j



Step 4 (Evaluation of A(s)*B,_,(s)“")

* B(S)=A(S)'BL(9)"=) ,Bs .

B1(8) =3, ()A(S) ™ +..4+a_, (S)A(s) +a ()1,

e We use the following (n+1) interpolation points
27 |

u(r)=w—",W =en

¢ ér = i BIW o
=0

[B.] and [B,] form a DFT pair

18
* B|:EZB|WI
r=0



Step 5 (Evaluation of a (s)“)

a(5) =25 =Y as

We use the following (n+1) interpolation points
27 |

u(r)=W=—",w =gt
ar=a(u(r) = aw™"
=0

[4,] and [a,] form a DFT pair

a, =iz Fw", 1=01...,n
R r=0



i Step 6. (Evaluation of the Drazin inverse)



i Implementation

= The above algorithms have been implemented in Mathematica.

= The following graphs shows the efficiency of the DFT based
algorithms compared to the algorithms described in
[Karampetakis 1997, Staminirovic and Karampetakis 2000]. The
red surface represents the DFT based algorithms.
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i Conclusions

= Two new algorithms have been presented for the computation
of the generalized inverse and Drazin inverse of a polynomial
matrix.

= The proposed algorithms proved to be more efficient from the
known ones in the case where the degree and the size of the
polynomial matrix get bigger.

= The proposed algorithms can be easily extended to the
multivariable polynomial matrices.



