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i Objectives

e A DFT based algorithm for the evaluation of the
generalized inverse and the Drazin inverse of
a multivariable polynomial matrix is presented.

e The efficiency of the algorithms is illustrated via
complexity analysis



i Notation

Consider the polynomial matnx with real coefficients in the »n indeterminates
Z,52,5...,2, (called nD pnlynnmial matrix)

Z15e57,) = ZZ Z[h (a2 e Rlz02, ]

K=0Jp=0 k,=0

with 4, , € R”™. For brevity and when the vanables are obvious, we will use the

notation z instead of (z,2,,...,2, ).



ND polynomial interpolation

Assume that we need to compute the value of f7(4) where £
some polynomial function. The evaluation-interpolation
method of computing 7(A) is based on the following steps

) Step 1 Evaluation of the polynomial (matrix) at a set of
R= H,1 . +1) suitably chosen points. This step results in a set of constant

matrices.

o Step 2 Application of the function f on the set of constant matrices
derived from step 1.

o Step 3 Computation of the coefficients of f (A) through interpolation.



nD DFT

Consider the finite sequence X (k,,...k ) and X(r,...r), k,r =0,1..,M..

In order

for the sequence X (K,,...k ) and X(r,...,r) to constitute a DFT pair the following

relations should hold [Dudgeon] :
X (f,...r)= Z Z Z X (Ky,... kn)Wl_klrl ...Wl_knrn

k=0k,=0 Kk,=
l < % ki K r
Kllrak) =388 R

where
W, =e"" vl 12,3,...n

R=]] L(M, +1)

and X, X are discrete argument matrix-valued functions, with dimensions

pxm.



Polynomial interpolation and DFT

Efficiency of steps 1, 2 and 3 of the evaluation-interpolation
algorithm.

e In step 2 a suitable algorithm computing 7(4) where Ais a
constant matrix, must be chosen. Then, the critical points of the
algorithm are steps 1 and 3.

e By using as evaluation points in Step 1 Fourier points, the
evaluation of the polynomial matrix is equivalent to the DFT of
the multidimensional matrix of the coefficients. Step 3 becomes
an inverse DFT problem.

e By using FFT the speed of the algorithm improves dramatically.



Generalized Inverse of a
Multivariable Polynomial Matrix

[Penrose] For every matrix A< RP™™, a unique matrix A" € R™", which is called
generalized inverse, exists satisfying

(i) AATA=A
(i) A"AA" = A"
(iii) AA*) = AA"
. T
(iv) (A"A) =A'A
where A" denotes the transpose of A. In an analogous way we define the generalized
inverse A(z,...,2,)" €R(z,...2,)" = of amultivariable polynomial matrix

A( 197 n)ER[ 197 n}pxm



Generalized Inverse of a
Multivariable Polynomial Matrix

Following the steps of [Karampetakis 1997] we have:
Let A(Z) = A(z,,...2,) €R[2,,...,2,]"" and

a(s.2,,...2,) = det| sl , — AZ)A(Z)" |

=(a0 (7)s” +---+ap_l(7)s+ap(7))
a,(Z) =1, be the characteristic polynomial of A(Z)x A(Z)'.
Let k such that it satisfies a (Z)=0,...,a,,(Z)=0 while a,(Z)=0, and define
A:={(Z)eC":a,(Z) =0}
Then the generalized inverse A(Z)" of A(Z) for ZeC" — A is given by
1

A@Z) =- A(Z)' B,(7)

K

B,,(2) = 8,2 ADA@) | +-+a, (D)1,



Generalized Inverse of a Multivariable Polynomial Matrix
Step 1

8. 20n2) = ) D [ 822l

e Define deg, (a(s, ..., Z,)
deg, (a(s zl,...,zn))

deg, (a(s,z.....2,))<2pM, =D,

e \We use following R, —H " o(b. +1) interpolation points

27 ]

u,(r;) =W, "i=0,.. ,nandr,=0,1...,b where W, =¢""
T T ]
. = det| 0 (1)1, = AL (). Uy (D) AU ()t (D] =20 Z[ ety W W

e [a, ,]and[4,, ] formaDFT pair Thus we compute &, , via IDFT



Generalized Inverse of a Multivariable Polynomial Matrix
Step 2

Find using a loop k such thata, ,(Z) =3, ,,(Z)=---=a,(Z)=0 and a,(Z) =0



Generalized Inverse of a Multivariable Polynomial Matrix
Step 3

C(2)=AZ) B, (D) =a,()) ADAQD) | +-+a, (D)1,

M

e C(2)= Zi C .. [lel ZU

where n, = max{2(k -1)M, + M,k =1..., p} =(2p-1M,

* We use the following R, =] | . {(2p—1M, +1} points

27 ]

u,(r;)=W, ";i=1..,nandr, =0,1...,n, where W, =e™

N

Ny
X _2: —nh £\ Tl
Crl...rn - e CIOInW1 Wn "

° [C,O_,_,n] and [érl---rn] form a DFT pair. Thus we compute C,OUI via IDFT

“In



Step 4

| Generalized Inverse of a Multivariable Polynomial Matrix

A(Z)" = -

a)



i Drazin inverse

For every matrix AeR™™, there exists a unique matrix A° € R™™, which is called
Drazin inverse, satisfying

(i) A°A* = A* for k =ind(A) = min(k e N : rank | A* | = rank [ A“**)
(ii) A°PAAP = AP
(i) AAP = APA



Drazin inverse

Consider a nonregular nD polynomial matrix A(Z). Assume that

a(s,z,,....2,) =det[sl, — A(Z)] =(3,(2)s" +--- +a,,(Z)s +a,(2))

where a,(Z) =1z C is the characteristic polynomial of A(Z).
Also, consider the following sequence of mxm polynomial matrices

B;(Z) =,(2)A(Z)’ +--a,,(7)A(Z) +a,(2)1,,,8,(Z) =1 j=0,....m

Let a,(Z)=0,...,a,_,(Z)=0,a,(7) % 0.
Define the following set A={z,C" :a,(z;) =0}
Also, assume that B_(7),...,B,(Z)=0,B, ;(Z)#0and k=r-t.
In the case ZeC" — A and k >0, the Drazin inverse of A(Z) is given by
A(Z)"B.,(2)""
a,(z)""
B..(7) =8, (2)A(Z)" +-+a_,(T)A(s) +a, (D)1,

A(Z)° =

In the case ZeC"-A and k=0, we get
For 7; € A we can use the same algorithm again.

A(Z)° =0.



Drazin Inverse of a Multivariable Polynomial Matrix

Step 1
bn
a(s,z,,....2,) = Z Z gy, [shze ..z
ky=0 k=0 k=0
e Define deg, (a(s, zl,...,zn))zmzz b,
deg, (a(s,2,,....2,) )<mM:=hy

deg, (a(s,z,...z,))<mM, =b,

* \We use following R, = H ", (b +1) interpolation points

27

Ui(rj) :Wi_rj 9| = O,...,n and rj = O,:L---,bi where Wi — gt

Qepr = det[uo(ro) |, —A(u(r),....u, (rn)):l

e [a, ,]and[&,,..] formaDFT  Thuswe compute &, , via IDFT



Drazin Inverse of a Multivariable Polynomial Matrix
Step 2

Find using a loop t such thata, ,(Z)=a,,(Z)=:--=4a,(Z)=0 and a,(Z) =0

A polynomial matrix

B(z,...,Z,) € R[Z;,..., 2, ]™™"
of degrees @, in respect with variables z,,i =1,...,n, is the zero polynomial matrix iff
its values at R = H ", (g, +1) distinct points are the zero matrix.

Find r such that B_(Z),...,B,(Z)=0,B,_,(Z) #0and k =r —t using the above lemma.



Drazin Inverse of a Multivariable Polynomial Matrix
Step 3

C(7) = AZ)"B, ()"

L My

. C(Z)=2..2.Cpy |z 20|, 0= (t-D)(K+ DM,

e We use the following R, = | .,{(n; +1} points

I—‘“—'

U, (I’j) :Wi_rj ,I :1,..., n and rj = O,l’.”, n. where Wi _ eniﬁ

Eon =

_rlll _rnln
CIO---InWl Wn

Ny Ny

. [Clo---ln} and [érl---rn] form a DFT pair. Thus we compute C,O._I via IDFT

“In



Drazin Inverse of a Multivariable Polynomial Matrix
Step 4

c(7)=a ()"
o c(Z) = dzi Cox | 2z |, where d, =M, (k +1)

* We use the following R, =] | I, (d; +1) points

u,(r;) =W, ;i=1..,nand r, =0,1....d;, where W, ="

d; d,
~ -l -1,
('.:rl...rn = z Z [Ckl...kn Mwl " Wn }
L=0 1,=0

. [C,O___,n] and [Crl---rn] form a DFT pair. Thus we compute C,., ViaIDFT

n



Step 5

| Drazin Inverse of a Multivariable Polynomial Matrix



i Complexity

eGeneralized inverse

O(mp°R,L, | where

L =(p+D)+ Y log(2pM, +1) and R, = (p+ D[ [ 1 (2pM, +1)



i Complexity

eDrazin inverse
O(m“RLj where
R=max{R,R,,R;},L=max{L,L,,L,}

andL, = Zn: log(b. +1),L, = Zn: log(n. +1), L, = Zn: log(d, +1)




Numerical aspects of the
algorithm

Comparison in Mathematica of the FFT and the symbolic
method

\l FFT method B Classic method ‘

Random two variable polynomial matrices of dimensions up to
5x5 and degrees up to 8.



Perturbation analysis

H(A(7)+5A (z.c)) —A" (7)”
A" (7)

2 and the relative error in

Relationship between the relative error ¢, =

2

the data 5. =122 , where ||A(Z)||, denotes the 2-norm of the coefficient matrix
¢ A, 2

Ao o Auw, of AQD).

loge. loge,
logé.
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5y P
= -10 . 7 -10
.
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e 35 | 35
Perturbation analysis of the denominator Perturbation analysis of the numerator of

polynomial of the generalized inverse the generalized inverse



Conclusions

= In this paper two algorithms have been presented for
determining the Moore-Penrose and Drazin inverse of nD
polynomial matrices.

= The algorithms are based on the fast Fourier transform and
therefore have the main advantages of speed in contrast to
other known algorithms.

= Applications include model matching, the solution of
multivariable Diophantine equations and its application to
control system synthesis problems, etc.

= The above mentioned algorithms may be easily extended in
order to determine other kind of inverses such as {2}, {1,2},
{1,2,3} and {1,2,4} inverses of multivariable polynomial
matrices.



